Download Free Robustness Of Analytical Chemical Methods And Pharmaceutical Technological Products Book in PDF and EPUB Free Download. You can read online Robustness Of Analytical Chemical Methods And Pharmaceutical Technological Products and write the review.

In analytical chemistry and pharmaceutical technology attention is increasingly focussed on improving the quality of methods and products. This book aims at fostering the awareness of the potential of existing mathematical and statistical methods to improve this quality. It provides procedures and ideas on how to make a product or a method less sensitive to small variations in influencing factors. Major issues covered are robustness and stability improvement and ruggedness testing. General strategies and a theoretical introduction to these methods are described, and thorough overviews of methods used in both application areas and descriptions of practical applications are given.Features of this book:• Gives a good overview of mathematical and statistical methods used in two application areas, i.e. pharmaceutical technology and analytical chemistry• Illustrates the different approaches available to attain robustness• Gives ideas on how to use methods in practical situations.The book is intended for those who develop and optimize, and are responsible for the overall quality of, analytical methods and pharmaceutical technological products and procedures.
Capillary electrophoresis (CE) is a powerful analytical technique that is widely used in research and development and in quality control of pharmaceuticals. Many reports of highly efficient separations and methods have been published over the past 15 years. CE offers several advantages over high-pressure or high-performance liquid chromatography (HPLC). These include simplicity, rapid analysis, automation, ruggedness, different mechanisms for selectivity, and low cost. Moreover, EC requires smaller sample size and yet offers higher efficiency and thus greater resolution power over HPLC. These characteristics are very attractive in research and development, even more so in pharmaceutical quality control (QC) and stability monitoring (SM) studies. This book will provide busy pharmaceutical scientists a complete yet concise reference guide for utilizing the versatility of CE in new drug development and quality control.- Provides current status and future developments in CE analysis of pharmaceuticals.- Explains how to develop and validate methods.- Includes major pharmaceutical applications including assays and impurity testing.
This book provides a comprehensive guide on validating analytical methods. Key features: Full review of the available regulatory guidelines on validation and in particular, ICH. Sections of the guideline, Q2(R1), have been reproduced in this book with the kind permission of the ICH Secretariat; Thorough discussion of each of the validation characteristics (Specificity; Linearity; Range; Accuracy; Precision; Detection Limit; Quantitation Limit; Robustness; System Suitability) plus practical tips on how they may be studied; What to include in a validation protocol with advice on the experimental procedure to follow and selection of appropriate acceptance criteria; How to interpret and calculate the results of a validation study including the use of suitable statistical calculations; A fully explained case study demonstrating how to plan a validation study, what to include in the protocol, experiments to perform, setting acceptance criteria, interpretation of the results and reporting the study.
Recent Advances in Analytical Techniques is a series of updates in techniques used in chemical analysis. Each volume presents information about a selection of analytical techniques. Readers will find information about developments in analytical methods such as chromatography, electrochemistry, optical sensor arrays for pharmaceutical and biomedical analysis. Novel Developments in Pharmaceutical and Biomedical Analysis is the second volume of the series and covers the following topics: o Chromatographic assays of solid dosage forms and their drug dissolution studies o UHPLC method for the estimation of bioactive compounds o HILIC based LC/MS for metabolite analysis o In vitro methods for the evaluation of oxidative stress o Application of vibrational spectroscopy in studies of structural polymorphism of drugs o Electrochemical sensors based on conductive polymers and carbon nanotubes o Optical sensor arrays for pharmaceutical and biomedical analyses o Chemical applications of ionic liquids o New trends in enantioanalysis of pharmaceutical compounds
Use chemometric techniques to develop optimum separation conditions for capillary electrophoreses For all its advantages, capillary electrophoresis (CE) also carries significant disadvantages for the researcher. Offering a unique blend of information from authors active in a variety of developments of chemometrics in CE, Chemometric Methods in Capillary Electrophoresis presents modern chemometric methods as an alternative to help alleviate the problems commonly encountered during routine analysis and method development. Focusing on current chemometric methods utilized in CE endeavours by research-active experts in the field, the book begins with a thorough introduction to CE and chemometric-related concepts and the need for modern chemometric methods in CE. Part 1 discusses differing types of screening designs and response surface methodology¿in an¿application based format Part 2 includes vital discussion on various exploratory data analysis, prediction, and classification techniques utilized in CE-related studies Part 3 provides practical information on modelling quantitative structure relationships Part 4 explores transformation techniques, in particular fundamental studies and applications of cross-correlation and Hadamard Transform Electrophoresis Showing how chemometric methods are applied in a wide array of applications including biological, medical, pharmaceutical, food, forensic, and environmental science, Chemometric Methods in Capillary Electrophoresis is not only highly significant to capillary electrophoresis-based endeavours, but instructive for investigators active in other areas of separation science who could benefit from its informative content.
Handbook of Analytical Quality by Design addresses the steps involved in analytical method development and validation in an effort to avoid quality crises in later stages. The AQbD approach significantly enhances method performance and robustness which are crucial during inter-laboratory studies and also affect the analytical lifecycle of the developed method. Sections cover sample preparation problems and the usefulness of the QbD concept involving Quality Risk Management (QRM), Design of Experiments (DoE) and Multivariate (MVT) Statistical Approaches to solve by optimizing the developed method, along with validation for different techniques like HPLC, UPLC, UFLC, LC-MS and electrophoresis. This will be an ideal resource for graduate students and professionals working in the pharmaceutical industry, analytical chemistry, regulatory agencies, and those in related academic fields. - Concise language for easy understanding of the novel and holistic concept - Covers key aspects of analytical development and validation - Provides a robust, flexible, operable range for an analytical method with greater excellence and regulatory compliance
The Analytical Methods Committee of the Royal Society of Chemistry has for many years been involved in national and international efforts to establish a comprehensive framework for achieving appropriate quality in chemical measurement. This handbook attempts to select or define robust procedures that ensure the best use of resources and enable laboratories to generate consistent, reliable data. Written in concise, easy-to-read language and illustrated with worked examples, it is a guide to current best practice and establishes a control framework for the development and validation of laboratory-based analytical methods. Topics include samples and sampling, method selection, equipment calibration and qualification, method development and validation, evaluation of data and statistical approaches for method performance and comparison. Valid Analytical Methods and Procedures will be welcomed by many organisations throughout the world who are required to prove that the validity of their analytical results can be established beyond reasonable doubt.
The book provides an indispensable guide on how to use HPLC in pharmaceutical analysis and drug control. Following a hands-on approach, the authors give practical advices how to prepare stationary and mobile phases, choose a suitable detector and set up an HPLC analysis. The publication gives insight into the key pharmaceutical applications of HPLC and the latest requirements of the major regulatory agencies.
The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spreadsheet, enabling the reader to study the programs, play with them and observe what happens. Suitable data are generated for each example in short routines, this ensuring a clear understanding of the data structure. Chapter 2 includes a brief introduction to matrix algebra and its implementation in Matlab and Excel while Chapter 3 covers the theory required for the modelling of chemical processes. This is followed by an introduction to linear and non-linear least-squares fitting, each demonstrated with typical applications. Finally Chapter 5 comprises a collection of several methods for model-free data analyses.* Includes a solid introduction to the simulation of equilibrium processes and the simulation of complex kinetic processes.* Provides examples of routines that are easily adapted to the processes investigated by the reader* 'Model-based' analysis (linear and non-linear regression) and 'model-free' analysis are covered
Practical approaches to ensure that analytical methods and instruments meet GMP standards and requirements Complementing the authors' first book, Analytical Method Validation and Instrument Performance Verification, this new volume provides coverage of more advanced topics, focusing on additional and supplemental methods, instruments, and electronic systems that are used in pharmaceutical, biopharmaceutical, and clinical testing. Readers will gain new and valuable insights that enable them to avoid common pitfalls in order to seamlessly conduct analytical method validation as well as instrument operation qualification and performance verification. Part 1, Method Validation, begins with an overview of the book's risk-based approach to phase appropriate validation and instrument qualification; it then focuses on the strategies and requirements for early phase drug development, including validation of specific techniques and functions such as process analytical technology, cleaning validation, and validation of laboratory information management systems Part 2, Instrument Performance Verification, explores the underlying principles and techniques for verifying instrument performance—coverage includes analytical instruments that are increasingly important to the pharmaceutical industry, such as NIR spectrometers and particle size analyzers—and offers readers a variety of alternative approaches for the successful verification of instrument performance based on the needs of their labs At the end of each chapter, the authors examine important practical problems and share their solutions. All the methods covered in this book follow Good Analytical Practices (GAP) to ensure that reliable data are generated in compliance with current Good Manufacturing Practices (cGMP). Analysts, scientists, engineers, technologists, and technical managers should turn to this book to ensure that analytical methods and instruments are accurate and meet GMP standards and requirements.