Download Free Robust Control Design 2000 Rocond 2000 Book in PDF and EPUB Free Download. You can read online Robust Control Design 2000 Rocond 2000 and write the review.

This Proceedings contains the papers presented at the IFAC Symposium on Robust Control Design held in Prague on 21 - 23 June 2000. The technical program included 21 sessions on robust control and related topics in identification and signal processing. The methods presented in these sessions included linear matrix inequalities, polynomial techniques, sliding modes, optimal control, fuzzy and adaptive control. Attention was also paid to linear as well as nonlinear systems. The highlights of the technical program were two plenary lectures by J. Geromel (Universidade Estadual de Campinas, Brazil) and H. Kwakernaak (University of Twente, The Netherlands).
Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics.
This book provides an overview of the research done and results obtained during the last ten years in the fields of fractional systems control, fractional PI and PID control, robust and CRONE control, and fractional path planning and path tracking. Coverage features theoretical results, applications and exercises. The book will be useful for post-graduate students who are looking to learn more on fractional systems and control. In addition, it will also appeal to researchers from other fields interested in increasing their knowledge in this area.
This unique book presents an analytical uniform design methodology of continuous-time or discrete-time nonlinear control system design which guarantees desired transient performances in the presence of plant parameter variations and unknown external disturbances. All results are illustrated with numerical simulations, their practical importance is highlighted, and they may be used for real-time control system design in robotics, mechatronics, chemical reactors, electrical and electro-mechanical systems as well as aircraft control systems. The book is easy reading and is suitable for teaching.
Descriptor linear systems theory is an important part in the general field of control systems theory, and has attracted much attention in the last two decades. In spite of the fact that descriptor linear systems theory has been a topic very rich in content, there have been only a few books on this topic. This book provides a systematic introduction to the theory of continuous-time descriptor linear systems and aims to provide a relatively systematic introduction to the basic results in descriptor linear systems theory. The clear representation of materials and a large number of examples make this book easy to understand by a large audience. General readers will find in this book a comprehensive introduction to the theory of descriptive linear systems. Researchers will find a comprehensive description of the most recent results in this theory and students will find a good introduction to some important problems in linear systems theory.
The main subject of the monograph is the fractional calculus in the discrete version. The volume is divided into three main parts. Part one contains a theoretical introduction to the classical and fractional-order discrete calculus where the fundamental role is played by the backward difference and sum. In the second part, selected applications of the discrete fractional calculus in the discrete system control theory are presented. In the discrete system identification, analysis and synthesis, one can consider integer or fractional models based on the fractional-order difference equations. The third part of the book is devoted to digital image processing.
Provides One Unified Formula That Gives Solutions to Several Types of GSEsGeneralized Sylvester equations (GSEs) are applied in many fields, including applied mathematics, systems and control, and signal processing. Generalized Sylvester Equations: Unified Parametric Solutions presents a unified parametric approach for solving various types of GSEs
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.