Download Free Rna Modification Book in PDF and EPUB Free Download. You can read online Rna Modification and write the review.

Naturally occurring RNA always contains numerous biochemically altered nucleotides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process designated RNA modification. A large number of enzymes catalyzing the formation of these modified nucleosides or converting one canonical base into another at the posttranscriptional level have been studied for many years, but only recently have systematic and comparative studies begun. The functions of individual enzymes and/or the modified/edited nucleosides in RNA, however, have remained largely ignored. This book provides advance information on RNA modification, including the associated editing machinery, while offering the reader some perspective on the significance of such modifications in fine-tuning the structure and functions of mature RNA molecules and hence the ability to influence the efficiency and accuracy of genetic expression. Outstanding scientists who are actively working on RNA modification/editing processes have provided up-to-date information on these intriguing cellular processes that have been generated over the course of millions of years in all living organisms. Each review has been written and illustrated for a large audience of readers, not only specialists in the field, but also for advanced students or researchers who want to learn more about recent progress in RNA modification and editing.
This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and
This Comprehensive, current text explores the manifold ways in which living cells respond to genomic injury and alterations, including both spontaneous and environmentally induced DNA damage. With more than 4,000 complete references to primary research literature and over 380 color figures throughout, this book is an important text for all courses in DNA repair and mutagenesis. It will also serve as a major reference for all molecular biologists working in cancer biology, recombination, transcription and gene regulation, DNA replication, environmental studies, and biological evolution.
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
This book reviews a novel and exciting field of cellular and molecular biology called epitranscriptomics, which focuses on changes in an organism’s cells resulting from the posttranscriptional modification of cellular RNA. RNA-binding proteins (RBPs) play a crucial role in these posttranscriptional modifications and also support several cellular processes necessary for maintaining RNA homeostasis. Exploring the mechanisms underlying RNA modifications and RBP function is an emerging area of biomedical research, taking the study of gene regulation a step beyond epigenetics. This book reveals that the RNA molecule is not just an information-carrying molecule with some secondary structures. Accordingly, how RNA is modified, regulated, packaged, and controlled is an important aspect. Leading experts address questions such as where the over 170 distinct posttranscriptional RNA modifications are located on the genome, what percentage of mRNAs and noncoding RNAs these modifications include, and how an RNA modification impacts a person’s biology. In closing, the book reviews the role of RNA modifications and RBPs in a variety of diseases and their pathogenesis. Addressing some of the most exciting challenges in epitranscriptomics, this book provides a valuable and engaging resource for researchers in academia and industry studying the phenomena of RNA modification.
RNA Editing devotes a chapter to each of the major types of this form of RNA processing. Each chapter is written by a leader in the field and offers fundamental principles, as well as up to date information on recent advances. Numerous examples of RNAs known to be edited are provided throughout the volume, but most importantly, the book highlights the amazing mechanistic diversity found among the various types of RNA editing. RNAs are cleaved, ligated, and deaminated on their way to maturation, and in some cases, their sequence is even altered in the brief moment when RNA polymerase stalls. The chemical reactions that allow RNA editing, and the RNA and proteins that direct the process are all described and will be of interest to students and established researchers in the field as well as those scientists from other disciplines who come across examples of RNA editing.
The presence of modified nucleotides in cellular RNAs has been known for decades and over 100 distinct RNA modifications have been characterized to date. While the exact role of many of these modifications is still unclear, many are highly conserved across evolution and most contribute to the overall fitness of the organism. In recent years, new methods and bioinformatics approaches have been developed for the dissection of modification pathways and functions. These methods intersect a number of related fields, ranging from RNA processing to comparative genomics and systems biology. In addition, many of the techniques described in this volume have broad applicability, particularly in regards to the isolation, characterization, and reconstitution of ribonucleoprotein complexes, expanding the experimental repertoire available to all RNA researchers.
Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras. The overall book comprises three sections with two chapters in each section. The first section prepares you with all the necessary basics to get started in deep learning. Chapter 1 introduces you to the world of deep learning and its difference from machine learning, the choices of frameworks for deep learning, and the Keras ecosystem. You will cover a real-life business problem that can be solved by supervised learning algorithms with deep neural networks. You’ll tackle one use case for regression and another for classification leveraging popular Kaggle datasets. Later, you will see an interesting and challenging part of deep learning: hyperparameter tuning; helping you further improve your models when building robust deep learning applications. Finally, you’ll further hone your skills in deep learning and cover areas of active development and research in deep learning. At the end of Learn Keras for Deep Neural Networks, you will have a thorough understanding of deep learning principles and have practical hands-on experience in developing enterprise-grade deep learning solutions in Keras. What You’ll Learn Master fast-paced practical deep learning concepts with math- and programming-friendly abstractions. Design, develop, train, validate, and deploy deep neural networks using the Keras framework Use best practices for debugging and validating deep learning models Deploy and integrate deep learning as a service into a larger software service or product Extend deep learning principles into other popular frameworks Who This Book Is For Software engineers and data engineers with basic programming skills in any language and who are keen on exploring deep learning for a career move or an enterprise project.
This book focuses on the regulation of transcription and translation in Archaea and arising insights into the evolution of RNA processing pathways. From synthesis to degradation and the implications of gene expression, it presents the current state of knowledge on archaeal RNA biology in 13 chapters. Topics covered include the modification and maturation of RNAs, the function of small non-coding RNAs and the CRISPR-Cas defense system. While Archaea have long been considered exotic microbial extremophiles, they are now increasingly being recognized as important model microorganisms for the study of molecular mechanisms conserved across the three domains of life, and with regard to the relevance of similarities and differences to eukaryotes and bacteria. This unique book offers a valuable resource for all readers interested in the regulation of gene expression in Archaea and RNA metabolism in general.