Download Free Rna Editing Book in PDF and EPUB Free Download. You can read online Rna Editing and write the review.

This volume provides an overview about main RNA editing mechanisms, focusing on their functions in physiological as well as pathological conditions. Chapters guide readers through state- of-the art methodologies to investigate RNA editing through wet and dry approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, RNA Editing: Methods and Protocols aims to ensure successful results in the further study of this vital field.
RNA Editing devotes a chapter to each of the major types of this form of RNA processing. Each chapter is written by a leader in the field and offers fundamental principles, as well as up to date information on recent advances. Numerous examples of RNAs known to be edited are provided throughout the volume, but most importantly, the book highlights the amazing mechanistic diversity found among the various types of RNA editing. RNAs are cleaved, ligated, and deaminated on their way to maturation, and in some cases, their sequence is even altered in the brief moment when RNA polymerase stalls. The chemical reactions that allow RNA editing, and the RNA and proteins that direct the process are all described and will be of interest to students and established researchers in the field as well as those scientists from other disciplines who come across examples of RNA editing.
“The objective of this CTMI volume is to provide readers with a foundation for understanding what ADARs are and how they act to affect gene expression and function. It is becoming increasingly apparent that ADARs may possess roles not only as enzymes that deaminate adenosine to produce inosine in RNA substrates with double-stranded character, but also as proteins independent of their catalytic property. Because A-to-I editing may affect base-pairing and RNA structure, processes including translation, splicing, RNA replication, and miR and siRNA silencing may be affected. Future studies of ADARs no doubt will provide us with additional surprises and new insights into the modulation of biological processes by the ADAR family of proteins.”
Naturally occurring RNA always contains numerous biochemically altered nucleotides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process designated RNA modification. A large number of enzymes catalyzing the formation of these modified nucleosides or converting one canonical base into another at the posttranscriptional level have been studied for many years, but only recently have systematic and comparative studies begun. The functions of individual enzymes and/or the modified/edited nucleosides in RNA, however, have remained largely ignored. This book provides advance information on RNA modification, including the associated editing machinery, while offering the reader some perspective on the significance of such modifications in fine-tuning the structure and functions of mature RNA molecules and hence the ability to influence the efficiency and accuracy of genetic expression. Outstanding scientists who are actively working on RNA modification/editing processes have provided up-to-date information on these intriguing cellular processes that have been generated over the course of millions of years in all living organisms. Each review has been written and illustrated for a large audience of readers, not only specialists in the field, but also for advanced students or researchers who want to learn more about recent progress in RNA modification and editing.
Goringer’s brilliant new work dedicates a chapter to each of the main types of RNA editing – the very first volume to do so. All of the sections here have been written by experts in the various research areas and a specific focus is put on the correlation between RNA structure and function, as well as on the complex cellular machineries that catalyze the different editing reactions. This leads to a "state of the art" compendium of our current knowledge on RNA editing.
This Comprehensive, current text explores the manifold ways in which living cells respond to genomic injury and alterations, including both spontaneous and environmentally induced DNA damage. With more than 4,000 complete references to primary research literature and over 380 color figures throughout, this book is an important text for all courses in DNA repair and mutagenesis. It will also serve as a major reference for all molecular biologists working in cancer biology, recombination, transcription and gene regulation, DNA replication, environmental studies, and biological evolution.
This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and
The information encoded in DNA is conveyed to the rest of the cell in a molecule called RNA. To diversify this information, as well as repair it when mistakes are made, RNA is modified through a series of reactions known as RNA editing. This book describes the fascinating and unexpectedly diverse ways RNA editing can occur, in organisms ranging from single- celled protozoa to man.
A Best Book of 2021 by Bloomberg BusinessWeek, Time, and The Washington Post The bestselling author of Leonardo da Vinci and Steve Jobs returns with a “compelling” (The Washington Post) account of how Nobel Prize winner Jennifer Doudna and her colleagues launched a revolution that will allow us to cure diseases, fend off viruses, and have healthier babies. When Jennifer Doudna was in sixth grade, she came home one day to find that her dad had left a paperback titled The Double Helix on her bed. She put it aside, thinking it was one of those detective tales she loved. When she read it on a rainy Saturday, she discovered she was right, in a way. As she sped through the pages, she became enthralled by the intense drama behind the competition to discover the code of life. Even though her high school counselor told her girls didn’t become scientists, she decided she would. Driven by a passion to understand how nature works and to turn discoveries into inventions, she would help to make what the book’s author, James Watson, told her was the most important biological advance since his codiscovery of the structure of DNA. She and her collaborators turned a curiosity of nature into an invention that will transform the human race: an easy-to-use tool that can edit DNA. Known as CRISPR, it opened a brave new world of medical miracles and moral questions. The development of CRISPR and the race to create vaccines for coronavirus will hasten our transition to the next great innovation revolution. The past half-century has been a digital age, based on the microchip, computer, and internet. Now we are entering a life-science revolution. Children who study digital coding will be joined by those who study genetic code. Should we use our new evolution-hacking powers to make us less susceptible to viruses? What a wonderful boon that would be! And what about preventing depression? Hmmm…Should we allow parents, if they can afford it, to enhance the height or muscles or IQ of their kids? After helping to discover CRISPR, Doudna became a leader in wrestling with these moral issues and, with her collaborator Emmanuelle Charpentier, won the Nobel Prize in 2020. Her story is an “enthralling detective story” (Oprah Daily) that involves the most profound wonders of nature, from the origins of life to the future of our species.