Download Free Rings Hopf Algebras And Brauer Groups Book in PDF and EPUB Free Download. You can read online Rings Hopf Algebras And Brauer Groups and write the review.

"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "
"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "
This volume is devoted to the Brauer group of a commutative ring and related invariants. Part I presents a new self-contained exposition of the Brauer group of a commutative ring. Included is a systematic development of the theory of Grothendieck topologies and étale cohomology, and discussion of topics such as Gabber's theorem and the theory of Taylor's big Brauer group of algebras without a unit. Part II presents a systematic development of the Galois theory of Hopf algebras with special emphasis on the group of Galois objects of a cocommutative Hopf algebra. The development of the theory is carried out in such a way that the connection to the theory of the Brauer group in Part I is made clear. Recent developments are considered and examples are included. The Brauer-Long group of a Hopf algebra over a commutative ring is discussed in Part III. This provides a link between the first two parts of the volume and is the first time this topic has been discussed in a monograph. Audience: Researchers whose work involves group theory. The first two parts, in particular, can be recommended for supplementary, graduate course use.
This comprehensive reference summarizes the proceedings and keynote presentations from a recent conference held in Brussels, Belgium. Offering 1155 display equations, this volume contains original research and survey papers as well as contributions from world-renowned algebraists. It focuses on new results in classical Hopf algebras as well as the
This study demonstrates the key manipulations surrounding Brauer groups, graded rings, group representations, ideal classes of number fields, p-adic differential equations, and rationality problems of invariant fields - displaying a command of the most advanced methods in algebra. It describes new developments in noncommutative valuation theory and
This book studies Hopf algebras over valuation rings of local fields and their application to the theory of wildly ramified extensions of local fields. The results, not previously published in book form, show that Hopf algebras play a natural role in local Galois module theory. Included in this work are expositions of short exact sequences of Hopf algebras; Hopf Galois structures on separable field extensions; a generalization of Noether's theorem on the Galois module structure of tamely ramified extensions of local fields to wild extensions acted on by Hopf algebras; connections between tameness and being Galois for algebras acted on by a Hopf algebra; constructions by Larson and Greither of Hopf orders over valuation rings; ramification criteria of Byott and Greither for the associated order of the valuation ring of an extension of local fields to be Hopf order; the Galois module structure of wildly ramified cyclic extensions of local fields of degree p and p2; and Kummer theory of formal groups. Beyond a general background in graduate-level algebra, some chapters assume an acquaintance with some algebraic number theory. From there, this exposition serves as an excellent resource and motivation for further work in the field.
This volume is based on the proceedings of the Hopf-Algebras and Quantum Groups conference at the Free University of Brussels, Belgium. It presents state-of-the-art papers - selected from over 65 participants representing nearly 20 countries and more than 45 lectures - on the theory of Hopf algebras, including multiplier Hopf algebras and quantum g
Hopf algebras have important connections to quantum theory, Lie algebras, knot and braid theory, operator algebras and other areas of physics and mathematics. They have been intensely studied in the past; in particular, the solution of a number of conjectures of Kaplansky from the 1970s has led to progress on the classification of semisimple Hopf algebras and on the structure of pointed Hopf algebras. Among the topics covered are results toward the classification of finite-dimensional Hopf algebras (semisimple and non-semisimple), as well as what is known about the extension theory of Hopf algebras. Some papers consider Hopf versions of classical topics, such as the Brauer group, while others are closer to work in quantum groups. The book also explores the connections and applications of Hopf algebras to other fields.
This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic
Focuses on the interaction between algebra and algebraic geometry, including high-level research papers and surveys contributed by over 40 top specialists representing more than 15 countries worldwide. Describes abelian groups and lattices, algebras and binomial ideals, cones and fans, affine and projective algebraic varieties, simplicial and cellular complexes, polytopes, and arithmetics.