Download Free Rice Biology In The Genomics Era Book in PDF and EPUB Free Download. You can read online Rice Biology In The Genomics Era and write the review.

There are few more emotive, or important, crops in the world than rice – the staple food for a huge proportion of the world’s population. This volume presents the latest results of research in crop improvement as well as in molecular and cellular activities in rice. It consists of 26 chapters and is divided into the following four sections: Genome-wide and genome-based research; Signal transduction and development; Evolution and ecology; Improvement of rice.
Rice is probably the most important food crop in the world, feeding half its population. Rice Improvement in the Genomics Era examines the findings in the current studies of rice improvement, using the modern genomic tools available in today's agriculture to better enable food security and human welfare. This comprehensive text describes in detail the latest tools of genomics and the application of biotechnology to improve this crucial food crop that is the most important staple of developing countries. Top respected experts in rice science and genomics offer the latest in cutting-edge science and research based on genome sequencing, gene technology, and molecular biology. Rice Improvement in the Genomics Era provides a wide range of information essential to any professional concerned with food safety, security, and sustainability. This valuable source comprehensively and accurately describes rice science from the basics of modern genomics on up to the application of biotechnology. This text is extensively referenced, and includes photographs, tables, graphs, and figures to clearly present information. Topics discussed include: rice genome sequencing project and its impact gene expression using microarray system haploid breeding hybrid rice technology Bt and disease resistance abiotic stress tolerance ensuring rice quality genetically improved nutrition in rice human milk proteins in rice grains food safety of transgenic crops and much more! Rice Improvement in the Genomics Era is an informative resource for educators, students, rice scientists, rice breeders, plant biotechnologists, researchers, and policymakers in agricultural sciences, rice improvement, and biotechnology. This source is a crucial addition to agricultural institutions, libraries, and teaching organizations.
This book focuses on recent advances in genetic resources, host - pathogen interactions, assay methods, mechanisms of pathogenesis, and disease resistance. Environmentally benign crop protection methods for major rice diseases such as rice blast, sheath blight, bacterial blight, and newly emerged rice diseases such as false smut and bacterial panicle blight disease are included. The content also contains recent rice breeding methods for higher yield and improved disease resistance, rice processing, delicious rice recipes, and food safety. The book includes a comprehensive understanding of Bacillus thuringiensis toxin and its application for crop protection. Holistically, the book demonstrates successful applications of genomics, physiology, chemistry, genetics, pathology, soil science, and food technology to sustainably protect rice crops for global food safety.
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.
The nature of populations, races, subspecies, and species. Genetic basis of isolation. Origin of isolation - theoretical. Origin of isolation - experimental. The nature of the speciation process.
This book provides a comprehensive coverage of the advances in genetics and genomics research on rice. The chapters feature the latest developments in rice research and cover such topics as the tools and resources for the functional analysis of rice genes, the identification of useful genes for rice improvement, the present understanding of rice development and biological processes, and the application of this present understanding towards rice improvement. The volume also features a perspective on synthesis and prospects, laying the groundwork for future advances in rice genetics and genomics. Written by authorities in the field, Genetics and Genomics of Rice will serve as an invaluable reference for rice researchers for years to come.
Plant genomics aims to sequence, characterize, and study the genetic compositions, structures, organizations, functions, and interactions/networks of an entire plant genome. Its development and advances are tightly interconnected with proteomics, metabolomics, metagenomics, transgenomics, genomic selection, bioinformatics, epigenomics, phenomics, system biology, modern instrumentation, and robotics sciences. Plant genomics has significantly advanced over the past three decades in the land of inexpensive, high-throughput sequencing technologies and fully sequenced over 100 plant genomes. These advances have broad implications in every aspect of plant biology and breeding, powered with novel genomic selection and manipulation tools while generating many grand challenges and tasks ahead. This Plant genomics provides some updated discussions on current advances, challenges, and future perspectives of plant genome studies and applications.
This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley’s importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.