Download Free Revolutionary Mathematics Book in PDF and EPUB Free Download. You can read online Revolutionary Mathematics and write the review.

Traces the revolution in statistics that gave rise to artificial intelligence and predictive algorithms refiguring contemporary capitalism. Our finances, politics, media, opportunities, information, shopping and knowledge production are mediated through algorithms and their statistical approaches to knowledge; increasingly, these methods form the organizational backbone of contemporary capitalism. Revolutionary Mathematics traces the revolution in statistics and probability that has quietly underwritten the explosion of machine learning, big data and predictive algorithms that now decide many aspects of our lives. Exploring shifts in the philosophical understanding of probability in the late twentieth century, Joque shows how this was not merely a technical change but a wholesale philosophical transformation in the production of knowledge and the extraction of value. This book provides a new and unique perspective on the dangers of allowing artificial intelligence and big data to manage society. It is essential reading for those who want to understand the underlying ideological and philosophical changes that have fueled the rise of algorithms and convinced so many to blindly trust their outputs, reshaping our current political and economic situation.
This biography of the mathematician, Sophie Germain, paints a rich portrait of a brilliant and complex woman, the mathematics she developed, her associations with Gauss, Legendre, and other leading researchers, and the tumultuous times in which she lived. Sophie Germain stood right between Gauss and Legendre, and both publicly recognized her scientific efforts. Unlike her female predecessors and contemporaries, Sophie Germain was an impressive mathematician and made lasting contributions to both number theory and the theories of plate vibrations and elasticity. She was able to walk with ease across the bridge between the fields of pure mathematics and engineering physics. Though isolated and snubbed by her peers, Sophie Germain was the first woman to win the prize of mathematics from the French Academy of Sciences. She is the only woman who contributed to the proof of Fermat’s Last Theorem. In this unique biography, Dora Musielak has done the impossible―she has chronicled Sophie Germain’s brilliance through her life and work in mathematics, in a way that is simultaneously informative, comprehensive, and accurate.
Robertson's earlier work, The New Renaissance projected the likely future impact of computers in changing our culture. Phase Change builds on and deepens his assessment of the role of the computer as a tool driving profound change by examining the role of computers in changing the face of the sciences and mathematics. He shows that paradigm shifts in understanding in science have generally been triggered by the availability of new tools, allowing the investigator a new way of seeing into questions that had not earlier been amenable to scientific probing.
Do high-speed, complicated arithmetic in your head using the Trachtenberg Speed System. Ever find yourself struggling to check a bill or a payslip? With The Trachtenberg Speed System you can. Described as the 'shorthand of mathematics', the Trachtenberg system only requires the ability to count from one to eleven. Using a series of simplified keys it allows anyone to master calculations, giving greater speed, ease in handling numbers and increased accuracy. Jakow Trachtenberg believed that everyone is born with phenomenal abilities to calculate. He devised a set of rules that allows every child to make multiplication, division, addition, subtraction and square-root calculations with unerring accuracy and at remarkable speed. It is the perfect way to gain confidence with numbers.
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
An awesome, globe-spanning, and New York Times bestselling journey through the beauty and power of mathematics What if you had to take an art class in which you were only taught how to paint a fence? What if you were never shown the paintings of van Gogh and Picasso, weren't even told they existed? Alas, this is how math is taught, and so for most of us it becomes the intellectual equivalent of watching paint dry. In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space. Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century's leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat's last theorem, that had seemed intractable before. At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.
In 1202, a 32-year old Italian finished one of the most influential books of all time, which introduced modern arithmetic to Western Europe. Devised in India in the seventh and eighth centuries and brought to North Africa by Muslim traders, the Hindu-Arabic system helped transform the West into the dominant force in science, technology, and commerce, leaving behind Muslim cultures which had long known it but had failed to see its potential. The young Italian, Leonardo of Pisa (better known today as Fibonacci), had learned the Hindu number system when he traveled to North Africa with his father, a customs agent. The book he created was Liber abbaci, the 'Book of Calculation', and the revolution that followed its publication was enormous. Arithmetic made it possible for ordinary people to buy and sell goods, convert currencies, and keep accurate records of possessions more readily than ever before. Liber abbaci's publication led directly to large-scale international commerce and the scientific revolution of the Renaissance. Yet despite the ubiquity of his discoveries, Leonardo of Pisa remains an enigma. His name is best known today in association with an exercise in Liber abbaci whose solution gives rise to a sequence of numbers - the Fibonacci sequence - used by some to predict the rise and fall of financial markets, and evident in myriad biological structures. In The Man of Numbers, Keith Devlin recreates the life and enduring legacy of an overlooked genius, and in the process makes clear how central numbers and mathematics are to our daily lives.
The author takes the general reader on a tour of the mathematical puzzles and paradoxes inherent in voting systems, such as the Alabama Paradox, in which an increase in the number of seats in the Congress could actually lead to a reduced number of representatives for a state, and the Condorcet Paradox, which demonstrates that the winner of elections featuring more than two candidates does not necessarily reflect majority preferences. Szpiro takes a roughly chronological approach to the topic, traveling from ancient Greece to the present and, in addition to offering explanations of the various mathematical conundrums of elections and voting, also offers biographical details on the mathematicians and other thinkers who thought about them, including Plato, Pliny the Younger, Pierre Simon Laplace, Thomas Jefferson, John von Neumann, and Kenneth Arrow.
Our innovative spirit and creativity lies beneath the comforts and security of today's technologically evolved society. Scientists, inventors, investors, artists and leaders play a vital role in the advancement and transmission of knowledge. Mathematics, in particular, plays a central role in numerous professions and has historically served as the gatekeeper to numerous other areas of study, particularly the hard sciences, engineering and business. Mathematics is also a major component in standardized tests in the U.S., and in university entrance exams in numerous parts of world. Creativity and imagination is often evident when young children begin to develop numeric and spatial concepts, and explore mathematical tasks that capture their interest. Creativity is also an essential ingredient in the work of professional mathematicians. Yet, the bulk of mathematical thinking encouraged in the institutionalized setting of schools is focused on rote learning, memorization, and the mastery of numerous skills to solve specific problems prescribed by the curricula or aimed at standardized testing. Given the lack of research based perspectives on talent development in mathematics education, this monograph is specifically focused on contributions towards the constructs of creativity and giftedness in mathematics. This monograph presents new perspectives for talent development in the mathematics classroom and gives insights into the psychology of creativity and giftedness. The book is aimed at classroom teachers, coordinators of gifted programs, math contest coaches, graduate students and researchers interested in creativity, giftedness, and talent development in mathematics.
This book is a philosophical study of mathematics, pursued by considering and relating two aspects of mathematical thinking and practice, especially in modern mathematics, which, having emerged around 1800, consolidated around 1900 and extends to our own time, while also tracing both aspects to earlier periods, beginning with the ancient Greek mathematics. The first aspect is conceptual, which characterizes mathematics as the invention of and working with concepts, rather than only by its logical nature. The second, Pythagorean, aspect is grounded, first, in the interplay of geometry and algebra in modern mathematics, and secondly, in the epistemologically most radical form of modern mathematics, designated in this study as radical Pythagorean mathematics. This form of mathematics is defined by the role of that which beyond the limits of thought in mathematical thinking, or in ancient Greek terms, used in the book’s title, an alogon in the logos of mathematics. The outcome of this investigation is a new philosophical and historical understanding of the nature of modern mathematics and mathematics in general. The book is addressed to mathematicians, mathematical physicists, and philosophers and historians of mathematics, and graduate students in these fields.