Download Free Review Of Electrical Machining Methods Book in PDF and EPUB Free Download. You can read online Review Of Electrical Machining Methods and write the review.

Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing and mechanical engineers, and professionals involved with MMC applications. It can also be used to teach modern manufacturing engineering or as a textbook for advanced undergraduate and postgraduate engineering courses in machining, manufacturing or materials.
Micro Electro-fabrication outlines three major nanoscale electro-fabrication techniques, including electro-discharge machining, electrochemical machining and electrochemical deposition. Applications covered include the fabrication of nozzles for automobiles, miniature hole machining for aerospace turbine blade cooling, biomedical device fabrication, such as stents, the fabrication of microchannels for microfluidic application, the production of various MEMS devices, rapid prototyping of micro components, and nanoelectrode fabrication for scanning electron microscopy. This comprehensive book discusses the fundamental nature of the various electro-fabrication processes as well as mathematical modelling and applications. It is an important reference for materials scientists and engineers working at the nanoscale. Provides state-of-the-art research investigations on various topics of micro/nano EDM, micro LECD, micro/nano ECM and ECDM techniques Compares a variety of electro-fabrication techniques, outlining which is best in different situations Outlines a variety of modeling and optimization techniques relating to micro/nano EDM, micro LECD, micro/nano ECM and ECDM
Electrical Discharge Machining (EDM) is one of the earliest and most widely used non-conventional machining processes. In recent years, the use of EDM has increased significantly in industries, mainly due to the extensive use of hard and difficult-to-cut materials, i.e. hardened steels, carbides, titanium alloys, nickel super alloys and so on. The EDM process is being used extensively for many important applications in die and mold, aerospace, automotive, micro-electronic and biomedical industries. As a result, extensive research has been carried out on various aspects of EDM. Taking those facts into consideration, this book aims to provide a comprehensive overview of the various types, technologies and applications of EDM. The book starts with chapters on the two major types of EDM: die-sinking EDM and wire-EDM. Subsequently, several EDM-based hybrid machining processes, such as: ultrasonically aided EDM, powder-mixed EDM, and simultanous micro-EDM/ECM have been discussed in detail. This book includes chapters on the detail of EDM surface and modeling and simulation of the EDM process. This book also contains chapters on the novel and innovative applications of EDM as well as machining of newer materials, such as: shape memory alloy, reaction-bonded silicon carbide, metal metrix composites, silicon based semiconductors, and non-conducting polymers. It is a useful resource for students and researchers who are planning to start their research on the area of EDM and related processes. It can also serve as a reference for students, academics, researchers, engineers, and working professionals in non-traditional manufacturing processes related industries.
"In writing this book, the author focused on EDM fundamentals. These are the items common to all EDM machines, such as the spark, how the spark is controlled, what causes overcut, and the importance of the dielectric fluid. With regard to the workplace, covered are the affect the spark has on the metallurgy and how the surface finish is produced and controlled. The book also describes the development of Electrical Discharge Machining (EDM), the EDM system and process, the EDM sparking systems, the power supply (generator), spark voltage, electrode servo systems, di-electric systems, ionization and electrode wear, chips, the EDM surface, DC arcing, different kinds of EDM, autormatic servo systems operation, and electromagnetic radiation. It is the author's intent that this text will serve as the primer on the EDM process, allowing the people using EDM to become more efficient and the machines more productive."--Back cover.
All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.
This volume presents research papers on unconventional machining (also known as non-traditional machining and advanced manufacturing) and composites which were presented during the 7th International and 28th All India Manufacturing Technology, Design and Research conference 2018 (AIMTDR 2018). The volume discusses improvements on well-established unconventional machining processes and novel or hybrid machining processes as well as properties, fabrication techniques and machining of composite materials. This volume will be of interest to academicians, researchers, and practicing engineers alike.
Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts. Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication. This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4-TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable so���� microactuators, and implementation of low-cost desktop micro- EDM system.
From the fan motor in your PC to precision control of aircraft, electrical machines of all sizes, varieties, and levels of complexity permeate our world. Some are very simple, while others require exacting and application-specific design. Electrical Machine Analysis Using Finite Elements provides the tools necessary for the analysis and design of any type of electrical machine by integrating mathematical/numerical techniques with analytical and design methodologies. Building successively from simple to complex analyses, this book leads you step-by-step through the procedures and illustrates their implementation with examples of both traditional and innovative machines. Although the examples are of specific devices, they demonstrate how the procedures apply to any type of electrical machine, introducing a preliminary theory followed by various considerations for the unique circumstance. The author presents the mathematical background underlying the analysis, but emphasizes application of the techniques, common strategies, and obtained results. He also supplies codes for simple algorithms and reveals analytical methodologies that universally apply to any software program. With step-by-step coverage of the fundamentals and common procedures, Electrical Machine Analysis Using Finite Elements offers a superior analytical framework that allows you to adapt to any electrical machine, to any software platform, and to any specific requirements that you may encounter.
This book presents select proceedings of the International Conference on Evolution in Manufacturing (ICEM 2020), and examines a range of areas including internet-of-things for cyber manufacturing, data analytics for manufacturing systems and processes and materials. The topics covered include modeling simulation and decision making in cyber physical systems for supporting engineering and production management, innovative approach in materials development, biomaterial applications, and advancement in manufacturing and material technologies. The book also discusses sustainability in manufacturing and supply chain management including circular economy. The book will be a valuable reference for beginners, researchers, and professionals interested in smart manufacturing in engineering, production management and materials technology.