Download Free Review Of Doe Programs Book in PDF and EPUB Free Download. You can read online Review Of Doe Programs and write the review.

The Vision 21 Program is a relatively new research and development (R&D) program. It is funded through the U.S. Department of Energy's (DOE's) Office of Fossil Energy and its National Energy Technology Laboratory (NETL). The Vision 21 Program Plan anticipates that Vision 21 facilities will be able to convert fossil fuels (e.g., coal, natural gas, and petroleum coke) into electricity, process heat, fuels, and/or chemicals cost effectively, with very high efficiency and very low emissions, including of the greenhouse gas carbon dioxide (CO2). The goals of Vision 21 are extremely challenging and ambitious. As noted in the Vision 21 Technology Roadmap, if the program meets its goals, Vision 21 plants would essentially eliminate many of the environmental concerns traditionally associated with the conversion of fossil fuels into electricity and transportation fuels or chemicals (NETL, 2001). Given the importance of fossil fuels, and especially coal, to the economies of the United States and other countries and the need to utilize fossil fuels in an efficient and environmentally acceptable manner, the development of the technologies in the Vision 21 Program is a high priority. This report contains the results of the second National Research Council (NRC) review of the Vision 21 R&D Program.
There has been a substantial resurgence of interest in nuclear power in the United States over the past few years. One consequence has been a rapid growth in the research budget of DOE's Office of Nuclear Energy (NE). In light of this growth, the Office of Management and Budget included within the FY2006 budget request a study by the National Academy of Sciences to review the NE research programs and recommend priorities among those programs. The programs to be evaluated were: Nuclear Power 2010 (NP 2010), Generation IV (GEN IV), the Nuclear Hydrogen Initiative (NHI), the Global Nuclear Energy Partnership (GNEP)/Advanced Fuel Cycle Initiative (AFCI), and the Idaho National Laboratory (INL) facilities. This book presents a description and analysis of each program along with specific findings and recommendations. It also provides an assessment of program priorities and oversight.
Since its founding in 1982, the Small Business Innovation Research (SBIR) program has become the largest and most comprehensive public research and development funding program of small business research in the United States. An underlying tenet of the SBIR program, and the related Small Business Technology Transfer (STTR) program, is that small and young firms are an important source of new ideas that provide the underlying basis for technological innovation, productivity increases, and subsequent economic growth. By involving qualified small businesses in the nation's research and development efforts, SBIR/STTR grants stimulate the development of innovative technologies and help federal agencies achieve their missions and objectives. At the request of the Department of Energy (DOE), this report examines the SBIR and STTR programs at DOE, focusing on the effectiveness of DOE's SBIR/STTR processes and procedures on topic and awardee selection; DOE outreach efforts to SBIR and STTR applicants; collaborations created between small businesses and research institutions on account of the programs; a range of direct economic and non-economic impacts to awardees; and the role of SBIR/STTR programs in stimulating technological innovation and contributing to DOE's research and development needs, whether directly from awardees or indirectly through spillovers from other firms.
The primary purpose of systems engineering is to organize information and knowledge to assist those who manage, direct, and control the planning, development, production, and operation of the systems necessary to accomplish a given mission. However, this purpose can be compromised or defeated if information production and organization becomes an end unto itself. Systems engineering was developed to help resolve the engineering problems that are encountered when attempting to develop and implement large and complex engineering projects. It depends upon integrated program planning and development, disciplined and consistent allocation and control of design and development requirements and functions, and systems analysis. The key thesis of this report is that proper application of systems analysis and systems engineering will improve the management of tank wastes at the Hanford Site significantly, thereby leading to reduced life cycle costs for remediation and more effective risk reduction. The committee recognizes that evidence for cost savings from application of systems engineering has not been demonstrated yet.