Download Free Review And Assessment Of Planetary Protection Policy Development Processes Book in PDF and EPUB Free Download. You can read online Review And Assessment Of Planetary Protection Policy Development Processes and write the review.

Protecting Earth's environment and other solar system bodies from harmful contamination has been an important principle throughout the history of space exploration. For decades, the scientific, political, and economic conditions of space exploration converged in ways that contributed to effective development and implementation of planetary protection policies at national and international levels. However, the future of space exploration faces serious challenges to the development and implementation of planetary protection policy. The most disruptive changes are associated with (1) sample return from, and human missions to, Mars; and (2) missions to those bodies in the outer solar system possessing water oceans beneath their icy surfaces. Review and Assessment of Planetary Protection Policy Development Processes addresses the implications of changes in the complexion of solar system exploration as they apply to the process of developing planetary protection policy. Specifically, this report examines the history of planetary protection policy, assesses the current policy development process, and recommends actions to improve the policy development process in the future.
An in-depth view of the panspermia hypothesis examined against the latest knowledge of planetary formation and related processes. Panspermia is the concept that life can be passively transported through space on various bodies and seed, habitable planets and moons, which we are beginning to learn may exist in large numbers. It is an old idea, but not popular with those who prefer that life on Earth started on Earth, an alternative, also unproven hypothesis. This book updates the concept of panspermia in the light of new evidence on planet formation, molecular clouds, solar system motions, supernovae ejection mechanisms, etc. Thus, it is to be a book about newly understood prospects for the movement of life through space. The novel approach presented in this book gives new insights into the panspermia theory and its connection with planetary formation and the evolution of galaxies. This offers a good starting point for future research proposals about exolife and a better perspective for empirical scrutiny of panspermia theory. Also, the key to understanding life in the universe is to understand that the planetary formation process is convolved with the evolution of stellar systems in their galactic environment. The book provides the synthesis of all these elements and gives the readers an up-to-date insight on how panspermia might fit into the big picture. Audience Given the intrinsic interdisciplinary nature of the panspermia hypothesis the book will have a wide audience across various scientific disciplines covering astronomy, biology, physics and chemistry. Apart from scientists, the book will appeal to engineers who are involved in planning and realization of future space missions.
The goal of planetary protection is to control, to the degree possible, the biological cross-contamination of planetary bodies. Guidelines developed by the Committee on Space Research (COSPAR) are used by all spacefaring nations to guide their preparations for encounters with solar system bodies. NASA's Science Mission Directorate has convened the Planetary Protection Independent Review Board (PPIRB) to consider updating the COSPAR guidelines given the growing interest from commercial and private groups in exploration and utilization of Mars and other bodies in space. At the request of NASA, this publication reviews the findings of the PPIRB and comments on their consistency with the recommendations of the recent National Academies report Review and Assessment of the Planetary Protection Policy Development Processes.
Three recent developments have greatly increased interest in the search for life on Mars. The first is new information about the Martian environment including evidence of a watery past and the possibility of atmospheric methane. The second is the possibility of microbial viability on Mars. Finally, the Vision for Space Exploration initiative included an explicit directive to search for the evidence of life on Mars. These scientific and political developments led NASA to request the NRC's assistance in formulating an up-to-date integrated astrobiology strategy for Mars exploration. Among other topics, this report presents a review of current knowledge about possible life on Mars; an astrobiological assessment of current Mars missions; a review of Mars-mission planetary protection; and findings and recommendations. The report notes that the greatest increase in understanding of Mars will come from the collection and return to Earth of a well-chosen suite of Martian surface materials.
In spring 2011 the National Academies of Sciences, Engineering, and Medicine produced a report outlining the next decade in planetary sciences. That report, titled Vision and Voyages for Planetary Science in the Decade 2013-2022, and popularly referred to as the "decadal survey," has provided high-level prioritization and guidance for NASA's Planetary Science Division. Other considerations, such as budget realities, congressional language in authorization and appropriations bills, administration requirements, and cross-division and cross-directorate requirements (notably in retiring risk or providing needed information for the human program) are also necessary inputs to how NASA develops its planetary science program. In 2016 NASA asked the National Academies to undertake a study assessing NASA's progress at meeting the objectives of the decadal survey. After the study was underway, Congress passed the National Aeronautics and Space Administration Transition Authorization Act of 2017 which called for NASA to engage the National Academies in a review of NASA's Mars Exploration Program. NASA and the Academies agreed to incorporate that review into the midterm study. That study has produced this report, which serves as a midterm assessment and provides guidance on achieving the goals in the remaining years covered by the decadal survey as well as preparing for the next decadal survey, currently scheduled to begin in 2020.
This book is in full-color - other editions may be in grayscale (non-color). The hardback version is ISBN 9781680920512 and the paperback version is ISBN 9781680920505. The NASA Space Flight Program and Project Management Handbook (NASA/SP-2014-3705) is the companion document to NPR 7120.5E and represents the accumulation of knowledge NASA gleaned on managing program and projects coming out of NASA's human, robotic, and scientific missions of the last decade. At the end of the historic Shuttle program, the United States entered a new era that includes commercial missions to low-earth orbit as well as new multi-national exploration missions deeper into space. This handbook is a codification of the "corporate knowledge" for existing and future NASA space flight programs and projects. These practices have evolved as a function of NASA's core values on safety, integrity, team work, and excellence, and may also prove a resource for other agencies, the private sector, and academia. The knowledge gained from the victories and defeats of that era, including the checks and balances and initiatives to better control cost and risk, provides a foundation to launch us into an exciting and healthy space program of the future.
Under U.S. policy and international treaty, the goals of planetary protection are to avoid both adverse changes in Earth’s environment caused by introducing extraterrestrial matter and harmful contamination of solar system bodies in order to protect their biological integrity for scientific study. The United States has long cooperated with other countries and relevant scientific communities through the Committee on Space Research (COSPAR) of the International Council for Science in developing planetary protection guidance for different categories of space missions. In the past, achieving planetary protection objectives through science-based, international-consensus guidelines proved relatively straightforward because a small number of spacefaring nations explored the solar system, predominantly through government-led and scientifically focused robotic missions. However, interest in, and the capabilities to undertake, exploration and uses of outer space are evolving and expanding. More countries are engaging in space activities. Private-sector involvement is increasing. Planning is under way for human as well as robotic missions. As recent advisory reports have highlighted, the changes in the nature of space activities create unprecedented challenges for planetary protection. This publication responds to NASA’s request for “a short report on the impact of human activities on lunar polar volatiles (e.g., water, carbon dioxide, and methane) and the scientific value of protecting the surface and subsurface regions of the Earth’s Moon from organic and biological contamination.†It provides an overview of the current scientific understanding, value, and potential threat of organic and biological contamination of permanently shadowed regions (PSRs), lunar research relevant to understanding prebiotic evolution and the origin of life, and the likelihood that spacecraft landing on the lunar surface will transfer volatiles to polar cold traps. It also assesses how much and which regions of the Moon’s surface and subsurface warrant protection from organic and biological contamination because of their scientific value.
Recent spacecraft and robotic probes to Mars have yielded data that are changing our understanding significantly about the possibility of existing or past life on that planet. Coupled with advances in biology and life-detection techniques, these developments place increasing importance on the need to protect Mars from contamination by Earth-borne organisms. To help with this effort, NASA requested that the NRC examine existing planetary protection measures for Mars and recommend changes and further research to improve such measures. This report discusses policies, requirements, and techniques to protect Mars from organisms originating on Earth that could interfere with scientific investigations. It provides recommendations on cleanliness and biological burden levels of Mars-bound spacecraft, methods to reach those levels, and research to reduce uncertainties in preventing forward contamination of Mars.
Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.
NASA maintains a planetary protection policy to avoid the forward biological contamination of other worlds by terrestrial organisms, and back biological contamination of Earth from the return of extraterrestrial materials by spaceflight missions. Forward-contamination issues related to Mars missions were addressed in a 2006 National Research Council (NRC) book, Preventing the Forward Contamination of Mars. However, it has been more than 10 years since back-contamination issues were last examined. Driven by a renewed interest in Mars sample return missions, this book reviews, updates, and replaces the planetary protection conclusions and recommendations contained in the NRC's 1997 report Mars Sample Return: Issues and Recommendations. The specific issues addressed in this book include the following: The potential for living entities to be included in samples returned from Mars; Scientific investigations that should be conducted to reduce uncertainty in the above assessment; The potential for large-scale effects on Earth's environment by any returned entity released to the environment; Criteria for intentional sample release, taking note of current and anticipated regulatory frameworks; and The status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere.