Download Free Reusable Space Transportation Systems Book in PDF and EPUB Free Download. You can read online Reusable Space Transportation Systems and write the review.

Brings together for the first time details of the technology available and being developed to provide totally reusable launch vehicles for the future exploitation and exploration of space.
Annotation "Design Methodologies for Space Transportation Systems is a sequel to the author's earlier text, "Space Transportation: A Systems Approach to Analysis and Design. Both texts represent the most comprehensive exposition of the existing knowledge and practice in the design and project management of space transportation systems, and they reflect a wealth of experience by the author with the design and management of space systems. The text discusses new conceptual changes in the design philosophy away from multistage expendable vehicles to winged, reusable launch vehicles and presents an overview of the systems engineering and vehicle design process as well as systems trades and analysis. Individual chapters are devoted to specific disciplines such as aerodynamics, aerothermal analysis, structures, materials, propulsion, flight mechanics and trajectories, avionics and computers, and control systems. The final chapters deal with human factors, payload, launch and mission operations, safety, and mission assurance. The two texts by the author provide a valuable source of information for the space transportation community of designers, operators, and managers. A companion CD-ROM succinctly packages some oversized figures and tables, resources for systems engineering and launch ranges, and a compendium of software programs. The computer programs include the USAF AIRPLANE AND MISSILE DATCOM CODES (with extensive documentation); COSTMODL for software costing; OPGUID launch vehicle trajectory generator; SUPERFLO-a series of 11 programs intended for solving compressible flow problems in ducts and pipes found in industrial facilities; and a wealth of Microsoft Excel spreadsheet programs covering thedisciplines of statistics, vehicle trajectories, propulsion performance, math utilities,
Annotation This practical book gives young professionals all the information they need to know to get started in the space business. It takes you step-by-step through processes for systems engineering and acquisition, design and development, cost analysis, and program planning and analysis. You'll find the systems engineering and design process that applies to all space transportation systems, then the overall system architecture considerations that also apply to all space transportation systems. There is also detailed coverage of space launch vehicles by class, including the current space shuttle, other manned reusable systems, expendable systems, and future systems. A companion CD-ROM contains the Operations Simulation and Analysis Modeling System software.
The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbital mechanics of satellites including different coordinate frames, orbital perturbations and orbital transfers are explained. For launching the satellites to meet specific mission requirements, viz., payload/orbit, design considerations, giving step by step procedure are briefed. The selection methodology for launch vehicle configuration, its optimum staging and the factors which influence the vehicle performance are summarized. The influence of external, internal and dynamic operating environments experienced by the vehicle subsystems and the remedial measures needed are highlighted. The mission design strategies and their influence on the vehicle design process are elaborated. The various critical aspects of STS subsystems like flight mechanics, propulsion, structures and materials, thermal systems, stage auxiliary systems, navigation, guidance and control and the interdependencies and interactions between them are covered. The design guidelines, complexity of the flight environment and the reentry dynamics for the reentry missions are included. The book is not targeted as a design tool for any particular discipline or subsystem. Some of the design related equations or expressions are not attempted to derive from the first principle as this is beyond the scope of this book. However, the important analytical expressions, graphs and sketches which are essential to provide in-depth understanding for the design process as well as to understand the interactions between different subsystems are appropriately included.
The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space Shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.
&Quot;The authors review the past 20 years in which concepts for reusable space transportation systems have been evaluated in Europe and elsewhere, including technological studies and assessments, and developments of the essential technologies needed for the design and construction of such transportation systems."--Publisher description.
After the completion of the National Research Council (NRC) report, Maintaining U.S. Leadership in Aeronautics: Scenario-Based Strategic Planning for NASA's Aeronautics Enterprise (1997), the National Aeronautics and Space Administration (NASA) Office of Aeronautics and Space Transportation Technology requested that the NRC remain involved in its strategic planning process by conducting a study to identify a short list of revolutionary or breakthrough technologies that could be critical to the 20 to 25 year future of aeronautics and space transportation. These technologies were to address the areas of need and opportunity identified in the above mentioned NRC report, which have been characterized by NASA's 10 goals (see Box ES-1) in "Aeronautics & Space Transportation Technology: Three Pillars for Success" (NASA, 1997). The present study would also examine the 10 goals to determine if they are likely to be achievable, either through evolutionary steps in technology or through the identification and application of breakthrough ideas, concepts, and technologies.
History of the US space shuttle programme and its first 100 missions
Space transportation is one of the most essential elements for enabling activities in space. For current rockets, reliability is too low and launch cost is too high when compared to aircraft operations. Reusable Launch Vehicles could solve these deficiencies and are being investigated by many companies. This book contains a databank of 300 worldwide suborbital and orbital Reusable Launch Vehicle concepts. It covers ideas from the first concepts, such as Silver Bird, proposed by Eugen Saenger in 1944, to present ones such as SpaceShipOne, proposed by Burt Rutan in 2003, as well as all X Prize candidates. For reader friendly use, all information is prepared in the same data style, which makes this book a unique reference for rocket scientists as well as everybody interested in and fascinated by rockets. An introduction to space transportation systems, a study on the motivation for developing Reusable Launch Vehicles and a discussion about the benefit of an international Reusable Launch Vehicle program complete this book.
The space shuttle is a unique national resource. One of only two operating vehicles that carries humans into space, the space shuttle functions as a scientific laboratory and as a base for construction, repair, and salvage missions in low Earth orbit. It is also a heavy-lift launch vehicle (able to deliver more than 18,000 kg of payload to low Earth orbit) and the only current means of returning large payloads to Earth. Designed in the 1970s, the shuttle has frequently been upgraded to improve safety, cut operational costs, and add capability. Additional upgrades have been proposed-and some are under way-to combat obsolescence, further reduce operational costs, improve safety, and increase the ability of the National Aeronautics and Space Administration (NASA) to support the space station and other missions. In May 1998, NASA asked the National Research Council (NRC) to examine the agency's plans for further upgrades to the space shuttle system. The NRC was asked to assess NASA's method for evaluating and selecting upgrades and to conduct a top-level technical assessment of proposed upgrades.