Download Free Restricted Orbit Equivalence For Actions Of Discrete Amenable Groups Book in PDF and EPUB Free Download. You can read online Restricted Orbit Equivalence For Actions Of Discrete Amenable Groups and write the review.

This monograph offers a broad investigative tool in ergodic theory and measurable dynamics. The motivation for this work is that one may measure how similar two dynamical systems are by asking how much the time structure of orbits of one system must be distorted for it to become the other. Different restrictions on the allowed distortion will lead to different restricted orbit equivalence theories. These include Ornstein's Isomorphism theory, Kakutani Equivalence theory and a list of others. By putting such restrictions in an axiomatic framework, a general approach is developed that encompasses all of these examples simultaneously and gives insight into how to seek further applications.
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras
This proceedings volume reflects the current interest in and future direction of probability theory and related theory of analysis and statistics. It contains 2 survey papers and 21 contributed papers.
This book is a very readable exposition of the modern theory of topological dynamics and presents diverse applications to such areas as ergodic theory, combinatorial number theory and differential equations. There are three parts: 1) The abstract theory of topological dynamics is discussed, including a comprehensive survey by Furstenberg and Glasner on the work and influence of R. Ellis. Presented in book form for the first time are new topics in the theory of dynamical systems, such as weak almost-periodicity, hidden eigenvalues, a natural family of factors and topological analogues of ergodic decomposition. 2) The power of abstract techniques is demonstrated by giving a very wide range of applications to areas of ergodic theory, combinatorial number theory, random walks on groups and others. 3) Applications to non-autonomous linear differential equations are shown. Exposition on recent results about Floquet theory, bifurcation theory and Lyapanov exponents is given.
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory.
This book provides a unified approach to much of the theories of equivalence and duality between categories of modules that has transpired over the last 45 years. In particular, during the past dozen or so years many authors (including the authors of this book) have investigated relationships between categories of modules over a pair of rings that are induced by both covariant and contravariant representable functors, in particular by tilting and cotilting theories. By here collecting and unifying the basic results of these investigations with innovative and easily understandable proofs, the authors' aim is to provide an aid to further research in this central topic in abstract algebra, and a reference for all whose research lies in this field.
This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.
This volume presents a broad collection of current research by leading experts in the theory of dynamical systems.
Kleshchev describes a new approach to the subject of the representation theory of symmetric groups.