Download Free Resistance In Bacteria Book in PDF and EPUB Free Download. You can read online Resistance In Bacteria and write the review.

Globalization of the food supply has created conditions favorable for the emergence, reemergence, and spread of food-borne pathogens-compounding the challenge of anticipating, detecting, and effectively responding to food-borne threats to health. In the United States, food-borne agents affect 1 out of 6 individuals and cause approximately 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths each year. This figure likely represents just the tip of the iceberg, because it fails to account for the broad array of food-borne illnesses or for their wide-ranging repercussions for consumers, government, and the food industry-both domestically and internationally. A One Health approach to food safety may hold the promise of harnessing and integrating the expertise and resources from across the spectrum of multiple health domains including the human and veterinary medical and plant pathology communities with those of the wildlife and aquatic health and ecology communities. The IOM's Forum on Microbial Threats hosted a public workshop on December 13 and 14, 2011 that examined issues critical to the protection of the nation's food supply. The workshop explored existing knowledge and unanswered questions on the nature and extent of food-borne threats to health. Participants discussed the globalization of the U.S. food supply and the burden of illness associated with foodborne threats to health; considered the spectrum of food-borne threats as well as illustrative case studies; reviewed existing research, policies, and practices to prevent and mitigate foodborne threats; and, identified opportunities to reduce future threats to the nation's food supply through the use of a "One Health" approach to food safety. Improving Food Safety Through a One Health Approach: Workshop Summary covers the events of the workshop and explains the recommendations for future related workshops.
The global spread of antimicrobial-resistant pathogenic bacteria is a continuing challenge to the health care of humans and domesticated animals. With no new agents on the horizon, it is imperative to use antimicrobial agents wisely to preserve their future efficacy. Led by Editors Stefan Schwarz, Lina Maria Cavaco, and Jianzhong Shen with Frank Møller Aarestrup, an international team of experts in antimicrobial resistance of livestock and companion animals has created this valuable reference for veterinary students and practitioners as well as researchers and decision makers interested in understanding and preventing antimicrobial resistance.
AN AUTHORITATIVE SURVEY OF CURRENT RESEARCH INTO CLINICALLY USEFUL CONVENTIONAL AND NONCONVENTIONAL ANTIBIOTIC THERAPEUTICS Pharmaceutically-active antibiotics revolutionized the treatment of infectious diseases, leading to decreased mortality and increased life expectancy. However, recent years have seen an alarming rise in the number and frequency of antibiotic-resistant "Superbugs." The Centers for Disease Control and Prevention (CDC) estimates that over two million antibiotic-resistant infections occur in the United States annually, resulting in approximately 23,000 deaths. Despite the danger to public health, a minimal number of new antibiotic drugs are currently in development or in clinical trials by major pharmaceutical companies. To prevent reverting back to the pre-antibiotic era—when diseases caused by parasites or infections were virtually untreatable and frequently resulted in death—new and innovative approaches are needed to combat the increasing resistance of pathogenic bacteria to antibiotics. Bacterial Resistance to Antibiotics – From Molecules to Man examines the current state and future direction of research into developing clinically-useful next-generation novel antibiotics. An internationally-recognized team of experts cover topics including glycopeptide antibiotic resistance, anti-tuberculosis agents, anti-virulence therapies, tetracyclines, the molecular and structural determinants of resistance, and more. Presents a multidisciplinary approach for the optimization of novel antibiotics for maximum potency, minimal toxicity, and appropriated degradability Highlights critical aspects that may relieve the problematic medical situation of antibiotic resistance Includes an overview of the genetic and molecular mechanisms of antibiotic resistance Addresses contemporary issues of global public health and longevity Includes full references, author remarks, and color illustrations, graphs, and charts Bacterial Resistance to Antibiotics – From Molecules to Man is a valuable source of up-to-date information for medical practitioners, researchers, academics, and professionals in public health, pharmaceuticals, microbiology, and related fields.
Drug Discovery Targeting Drug-Resistant Bacteria explores the status and possible future of developments in fighting drug-resistant bacteria. The book covers the majority of microbial diseases and the drugs targeting them. In addition, it discusses the potential targeting strategies and innovative approaches to address drug resistance. It brings together academic and industrial experts working on discovering and developing drugs targeting drug-resistant (DR) bacterial pathogens. New drugs active against drug-resistant pathogens are discussed, along with new strategies being used to discover molecules acting via new modes of action. In addition, alternative therapies such as peptides and phages are included. Pharmaceutical scientists, microbiologists, medical professionals, pathologists, researchers in the field of drug discovery, infectious diseases and microbial drug discovery both in academia and in industrial settings will find this book helpful. Written by scientists with extensive industrial experience in drug discovery Provides a balanced view of the field, including its challenges and future directions Includes a special chapter on the identification and development of drugs against pathogens which exhibit the potential to be used as weapons of war
Infectious diseases are the leading cause of death globally, particularly among children and young adults. The spread of new pathogens and the threat of antimicrobial resistance pose particular challenges in combating these diseases. Major Infectious Diseases identifies feasible, cost-effective packages of interventions and strategies across delivery platforms to prevent and treat HIV/AIDS, other sexually transmitted infections, tuberculosis, malaria, adult febrile illness, viral hepatitis, and neglected tropical diseases. The volume emphasizes the need to effectively address emerging antimicrobial resistance, strengthen health systems, and increase access to care. The attainable goals are to reduce incidence, develop innovative approaches, and optimize existing tools in resource-constrained settings.
Antibiotics represent one of the most successful forms of therapy in medicine. But the efficiency of antibiotics is compromised by the growing number of antibiotic-resistant pathogens. Antibiotic resistance, which is implicated in elevated morbidity and mortality rates as well as in the increased treatment costs, is considered to be one of the major global public health threats (www.who.int/drugresistance/en/) and the magnitude of the problem recently prompted a number of international and national bodies to take actions to protect the public (http://ec.europa.eu/dgs/health_consumer/docs/road-map-amr_en.pdf: http://www.who.int/drugresistance/amr_global_action_plan/en/; http://www.whitehouse.gov/sites/default/files/docs/carb_national_strategy.pdf). Understanding the mechanisms by which bacteria successfully defend themselves against the antibiotic assault represent the main theme of this eBook published as a Research Topic in Frontiers in Microbiology, section of Antimicrobials, Resistance, and Chemotherapy. The articles in the eBook update the reader on various aspects and mechanisms of antibiotic resistance. A better understanding of these mechanisms should facilitate the development of means to potentiate the efficacy and increase the lifespan of antibiotics while minimizing the emergence of antibiotic resistance among pathogens.
This book presents a thorough and authoritative overview of the multifaceted field of antibiotic science – offering guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases. Provides readers with knowledge about the broad field of drug resistance Offers guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases Links strategies to analyze microbes to the development of new drugs, socioeconomic impacts to therapeutic strategies, and public policies to antibiotic-resistance-prevention strategies
This book summarizes the emerging trends in the field of antibiotic resistance of various gram-negative and gram-positive bacterial species. The ability of different species of bacteria to resist the antimicrobial agent has become a global problem. As such, the book provides a comprehensive overview of the advances in our understanding of the origin and mechanism of resistance, discusses the modern concept of the biochemical and genetic basis of antibacterial resistance and highlights the clinical and economic implications of the increased prevalence of antimicrobial resistant pathogens and their ecotoxic effects. It also reviews various strategies to curtail the emergence and examines a number of innovative therapeutic approaches, such as CRISPR, phage therapy, nanoparticles and natural antimicrobials, to combat the spread of resistance.
Antimicrobial Resistance in Bacteria of Animal Origin comprehensively examines the current research on antimicrobial resistance in the main veterinary and zoonotic pathogens, including resistance to disinfectants and metals used in agriculture.