Download Free Residues And Duality For Projective Algebraic Varieties Book in PDF and EPUB Free Download. You can read online Residues And Duality For Projective Algebraic Varieties and write the review.

"This book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of Kahler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations." "The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership, D. A. Cox explains toric residues and relates them to the earlier text." "The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given."--BOOK JACKET.
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Within the subject of topological dynamics, there has been considerable recent interest in systems where the underlying topological space is a Cantor set. Such systems have an inherently combinatorial nature, and seminal ideas of Anatoly Vershik allowed for a combinatorial model, called the Bratteli-Vershik model, for such systems with no non-trivial closed invariant subsets. This model led to a construction of an ordered abelian group which is an algebraic invariant of the system providing a complete classification of such systems up to orbit equivalence. The goal of this book is to give a statement of this classification result and to develop ideas and techniques leading to it. Rather than being a comprehensive treatment of the area, this book is aimed at students and researchers trying to learn about some surprising connections between dynamics and algebra. The only background material needed is a basic course in group theory and a basic course in general topology.
​This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.
This book originated from lecture notes for the course given by the author at the University of Notre Dame in the fall of 2016. The aim of the book is to give an introduction to the perturbative path integral for gauge theories (in particular, topological field theories) in Batalin–Vilkovisky formalism and to some of its applications. The book is oriented toward a graduate mathematical audience and does not require any prior physics background. To elucidate the picture, the exposition is mostly focused on finite-dimensional models for gauge systems and path integrals, while giving comments on what has to be amended in the infinite-dimensional case relevant to local field theory. Motivating examples discussed in the book include Alexandrov–Kontsevich–Schwarz–Zaboronsky sigma models, the perturbative expansion for Chern–Simons invariants of 3-manifolds given in terms of integrals over configurations of points on the manifold, the BF theory on cellular decompositions of manifolds, and Kontsevich's deformation quantization formula.
The generalized Ricci flow is a geometric evolution equation which has recently emerged from investigations into mathematical physics, Hitchin's generalized geometry program, and complex geometry. This book gives an introduction to this new area, discusses recent developments, and formulates open questions and conjectures for future study. The text begins with an introduction to fundamental aspects of generalized Riemannian, complex, and Kähler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as ‘canonical metrics’ in generalized Riemannian and complex geometry. The book then introduces generalized Ricci flow as a tool for constructing such metrics and proves extensions of the fundamental Hamilton/Perelman regularity theory of Ricci flow. These results are refined in the setting of generalized complex geometry, where the generalized Ricci flow is shown to preserve various integrability conditions, taking the form of pluriclosed flow and generalized Kähler-Ricci flow, leading to global convergence results and applications to complex geometry. Finally, the book gives a purely mathematical introduction to the physical idea of T-duality and discusses its relationship to generalized Ricci flow. The book is suitable for graduate students and researchers with a background in Riemannian and complex geometry who are interested in the theory of geometric evolution equations.
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Carathéodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Carathéodory, and the (p,q) (p,q) theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory. The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.