Download Free Research And Applications In Global Supercomputing Book in PDF and EPUB Free Download. You can read online Research And Applications In Global Supercomputing and write the review.

Rapidly generating and processing large amounts of data, supercomputers are currently at the leading edge of computing technologies. Supercomputers are employed in many different fields, establishing them as an integral part of the computational sciences. Research and Applications in Global Supercomputing investigates current and emerging research in the field, as well as the application of this technology to a variety of areas. Highlighting a broad range of concepts, this publication is a comprehensive reference source for professionals, researchers, students, and practitioners interested in the various topics pertaining to supercomputing and how this technology can be applied to solve problems in a multitude of disciplines.
Industrial Applications of High-Performance Computing: Best Global Practices offers a global overview of high-performance computing (HPC) for industrial applications, along with a discussion of software challenges, business models, access models (e.g., cloud computing), public-private partnerships, simulation and modeling, visualization, big data a
"This book offers a variety of perspectives and summarize the advances of control flow and data flow super computing, shedding light on selected emerging big data applications needing high acceleration and/or low power"--
The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.
Supercomputers play a significant and growing role in a variety of areas important to the nation. They are used to address challenging science and technology problems. In recent years, however, progress in supercomputing in the United States has slowed. The development of the Earth Simulator supercomputer by Japan that the United States could lose its competitive advantage and, more importantly, the national competence needed to achieve national goals. In the wake of this development, the Department of Energy asked the NRC to assess the state of U.S. supercomputing capabilities and relevant R&D. Subsequently, the Senate directed DOE in S. Rpt. 107-220 to ask the NRC to evaluate the Advanced Simulation and Computing program of the National Nuclear Security Administration at DOE in light of the development of the Earth Simulator. This report provides an assessment of the current status of supercomputing in the United States including a review of current demand and technology, infrastructure and institutions, and international activities. The report also presents a number of recommendations to enable the United States to meet current and future needs for capability supercomputers.
"This book is a comprehensive reference on concepts, algorithms, theories, applications, software, and visualization of data mining, text mining, Web mining and computing/supercomputing, covering state-of-the-art of the theory and applications of mining"--
With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.
With the development of computing technologies in today’s modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.
During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.
"This book presents, discusses, shares ideas, results and experiences on the recent important advances and future challenges on enabling technologies for achieving higher performance"--Provided by publisher.