Download Free Representation Theory Of Finite Group Extensions Book in PDF and EPUB Free Download. You can read online Representation Theory Of Finite Group Extensions and write the review.

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
This monograph adopts an operational and functional analytic approach to the following problem: given a short exact sequence (group extension) 1 → N → G → H → 1 of finite groups, describe the irreducible representations of G by means of the structure of the group extension. This problem has attracted many mathematicians, including I. Schur, A.H. Clifford, and G. Mackey and, more recently, M. Isaacs, B. Huppert, Y.G. Berkovich & E.M. Zhmud, and J.M.G. Fell & R.S. Doran. The main topics are, on the one hand, Clifford Theory and the Little Group Method (of Mackey and Wigner) for induced representations, and, on the other hand, Kirillov’s Orbit Method (for step-2 nilpotent groups of odd order) which establishes a natural and powerful correspondence between Lie rings and nilpotent groups. As an application, a detailed description is given of the representation theory of the alternating groups, of metacyclic, quaternionic, dihedral groups, and of the (finite) Heisenberg group. The Little Group Method may be applied if and only if a suitable unitary 2-cocycle (the Mackey obstruction) is trivial. To overcome this obstacle, (unitary) projective representations are introduced and corresponding Mackey and Clifford theories are developed. The commutant of an induced representation and the relative Hecke algebra is also examined. Finally, there is a comprehensive exposition of the theory of projective representations for finite Abelian groups which is applied to obtain a complete description of the irreducible representations of finite metabelian groups of odd order.
Provides an introduction to various aspects of the representation theory of finite groups. This book covers such topics as general non-commutative algebras, Frobenius algebras, representations over non-algebraically closed fields and fields of non-zero characteristic, and integral representations.
The Representation Theory of Finite Groups
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
This book presents a systematic account of this topic, from the classical foundations established by Schur 80 years ago to current advances and developments in the field. This work focuses on general methods and builds theory solidly on the study of modules over twisted group algebras, and provides a wide range of skill-sharpening mathematical techniques applicable to this subject. Offers an understanding of projective representations of finite groups for algebraists, number theorists, mathematical researchers studying modern algebra, and theoretical physicists.
Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.
These proceedings comprise two workshops celebrating the accomplishments of David J. Benson on the occasion of his sixtieth birthday. The papers presented at the meetings were representative of the many mathematical subjects he has worked on, with an emphasis on group prepresentations and cohomology. The first workshop was titled "Groups, Representations, and Cohomology" and held from June 22 to June 27, 2015 at Sabhal Mòr Ostaig on the Isle of Skye, Scotland. The second was a combination of a summer school and workshop on the subject of "Geometric Methods in the Representation Theory of Finite Groups" and took place at the Pacific Institute for the Mathematical Sciences at the University of British Columbia in Vancouver from July 27 to August 5, 2016. The contents of the volume include a composite of both summer school material and workshop-derived survey articles on geometric and topological aspects of the representation theory of finite groups. The mission of the annually sponsored Summer Schools is to train and draw new students, and help Ph.D students transition to independent research.