Download Free Report On The National Institute Of Oceanography Book in PDF and EPUB Free Download. You can read online Report On The National Institute Of Oceanography and write the review.

In the summer of 1803, Thomas Jefferson sent Meriwether Lewis and William Clark on a journey to establish an American presence in a land of unqualified natural resources and riches. Is it fitting that, on the 200th anniversary of that expedition, the United States, together with international partners, should embark on another journey of exploration in a vastly more extensive region of remarkable potential for discovery. Although the oceans cover more than 70 percent of our planet's surface, much of the ocean has been investigated in only a cursory sense, and many areas have not been investigated at all. Exploration of the Seas assesses the feasibility and potential value of implementing a major, coordinated, international program of ocean exploration and discovery. The study committee surveys national and international ocean programs and strategies for cooperation between governments, institutions, and ocean scientists and explorers, identifying strengths, weaknesses, and gaps in these activities. Based primarily on existing documents, the committee summarizes priority areas for ocean research and exploration and examines existing plans for advancing ocean exploration and knowledge.
The world's ocean has already experienced a 30% rise in acidity since the industrial revolution, with acidity expected to rise 100 to 150% over preindustrial levels by the end of this century. Potential consequences to marine life and also to economic activities that depend on a healthy marine ecosystem are difficult to assess and predict, but potentially devastating. To address this knowledge gap, Congress passed the Federal Ocean Acidification Research and Monitoring (FOARAM) Act in 2009, which, among other things, required that an interagency working group create a "Strategic Plan for Federal Research and Monitoring of Ocean Acidification." Review of the Federal Ocean Acidification Research and Monitoring Plan reviews the strategic plan on the basis of how well it fulfills program elements laid out in the FOARAM Act and follows the advice provided to the working group in the NRC's 2010 report, Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. This report concludes that, overall, the plan is strong and provides a comprehensive framework for improving our understanding of ocean acidification. Potential improvements include a better defined strategy for implementing program goals, stronger integration of the seven broad scientific themes laid out in the FOARAM Act, and better mechanisms for coordination among federal agencies and with other U.S. and international efforts to address ocean acidification.
Tide gauges show that global sea level has risen about 7 inches during the 20th century, and recent satellite data show that the rate of sea-level rise is accelerating. As Earth warms, sea levels are rising mainly because ocean water expands as it warms; and water from melting glaciers and ice sheets is flowing into the ocean. Sea-level rise poses enormous risks to the valuable infrastructure, development, and wetlands that line much of the 1,600 mile shoreline of California, Oregon, and Washington. As those states seek to incorporate projections of sea-level rise into coastal planning, they asked the National Research Council to make independent projections of sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account regional factors that affect sea level. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future explains that sea level along the U.S. west coast is affected by a number of factors. These include: climate patterns such as the El Niño, effects from the melting of modern and ancient ice sheets, and geologic processes, such as plate tectonics. Regional projections for California, Oregon, and Washington show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections. However, projections are lower north of Cape Mendocino because the land is being pushed upward as the ocean plate moves under the continental plate along the Cascadia Subduction Zone. However, an earthquake magnitude 8 or larger, which occurs in the region every few hundred to 1,000 years, would cause the land to drop and sea level to suddenly rise.
This book describes the development of ocean sciences over the past 50 years, highlighting the contributions of the National Science Foundation (NSF) to the field's progress. Many of the individuals who participated in the exciting discoveries in biological oceanography, chemical oceanography, physical oceanography, and marine geology and geophysics describe in the book how the discoveries were made possible by combinations of insightful individuals, new technology, and in some cases, serendipity. In addition to describing the advance of ocean science, the book examines the institutional structures and technology that made the advances possible and presents visions of the field's future. This book is the first-ever documentation of the history of NSF's Division of Ocean Sciences, how the structure of the division evolved to its present form, and the individuals who have been responsible for ocean sciences at NSF as "rotators" and career staff over the past 50 years.
One of the most significant, energetic, yet not well understood, oceanographic features in the Americas is the Gulf of Mexico Loop Current System (LCS), consisting of the Loop Current (LC) and the Loop Current Eddies (LCEs) it sheds. Understanding the dynamics of the LCS is fundamental to understanding the Gulf of Mexico's full oceanographic system, and vice versa. Hurricane intensity, offshore safety, harmful algal blooms, oil spill response, the entire Gulf food chain, shallow water nutrient supply, the fishing industry, tourism, and the Gulf Coast economy are all affected by the position, strength, and structure of the LC and associated eddies. This report recommends a strategy for addressing the key gaps in general understanding of LCS processes, in order to instigate a significant improvement in predicting LC/LCE position, evolving structure, extent, and speed, which will increase overall understanding of Gulf of Mexico circulation and to promote safe oil and gas operations and disaster response in the Gulf of Mexico. This strategy includes advice on how to design a long-term observational campaign and complementary data assimilation and numerical modeling efforts.