Download Free Remote Sensing For Environmental Monitoring And Change Detection Book in PDF and EPUB Free Download. You can read online Remote Sensing For Environmental Monitoring And Change Detection and write the review.

This publication is a compilation of papers that were presented at the IAHS Symposium on Remote Sensing for Environmental Monitoring and Change Detectionorganised by the IAHS International Commission on Remote Sensing, in Perugia, 2007. The 30 contributions cover approaches using the thermal infrared, microwave and radar; studies monitoring vegetation, snow and ice, and evapotranspiration; and the combination of remote sensing techniques and GISfor hydrological applications.
This book provides a step-by-step guide on how to use various publicly available remotely sensed time series data sources for environmental monitoring and assessment. Readers will learn how to extract valuable information on global changes from a 20-year collection of ready-to-use remotely sensed data through the free open statistical software R and its geographic data analysis and modeling tools. The case studies are from the Mediterranean region—a designated hot spot regarding climate change effects. Each chapter is dedicated to specific remote sensing products chosen for their spatial resolution. The methods used are adapted from large-scale to smaller-scale problems for different land cover areas. Features Includes real-world applications of environmental remotely sensed data Analyzes the advantages and restrictions of each data source Focuses on a wide spectrum of applications, such as hydrology, vegetation changes, land surface temperature, fire detection, and impacts Includes R computer codes with explanatory comments and all applications use only freely available remotely sensed data Presents a step-by-step processing through open source GIS and statistical analysis software Advanced Environmental Monitoring with Remote Sensing Time Series Data and R describes and provides details on recent advances concerning publicly available remotely sensed time series data in environmental monitoring and assessment. This book is a must-have practical guide for environmental researchers, professionals, and students.
For junior/graduate-level courses in Remote Sensing in Geography, Geology, Forestry, and Biology. This revision of Introductory Digital Image Processing: A Remote Sensing Perspective continues to focus on digital image processing of aircraft- and satellite-derived, remotely sensed data for Earth resource management applications. Extensively illustrated, it explains how to extract biophysical information from remote sensor data for almost all multidisciplinary land-based environmental projects. Part of the Prentice Hall Series Geographic Information Science.
Remote sensing has witnessed a renaissance as new sensor systems, data collection capabilities and image processing methodologies have expanded the technological capabilities of this science into new and important applications areas. Perhaps nowhere has this trend been more evident than in the study of earth environments. Within this broad application area remote sensing has proven to be an invaluable asset supporting timely data gathering at a range of synoptic scales, facilitating the mapping of complex landscapes and promoting the analysis of environmental process. Yet remote sensing’s contribution to the study of human/environmental interaction is scattered throughout a rich and diverse literature spanning the social and physical sciences, which frustrates access to, and the sharing of the knowledge gained through, these recent advances, and inhibits the operational use of these methods and techniques in day to day environmental practice, a recognized gap that reduces the effectiveness of environmental management programs. The objective of this book is to address this gap and provide the synthesis of method and application that is currently missing in the environmental science, re-introducing remote sensing as an important decision-support technology.
Generating a satisfactory classification image from remote sensing data is not a straightforward task. Many factors contribute to this difficulty including the characteristics of a study area, availability of suitable remote sensing data, ancillary and ground reference data, proper use of variables and classification algorithms, and the analyst's e
This text provides coverage of the fundamentals, the techniques, and the demonstrated results of a variety of projects in a manner accessible to both the novice and the advanced user of remotely sensed data.
Urban Remote Sensing The second edition of Urban Remote Sensing is a state-of-the-art review of the latest progress in the subject. The text examines how evolving innovations in remote sensing allow to deliver the critical information on cities in a timely and cost-effective way to support various urban management activities and the scientific research on urban morphology, socio-environmental dynamics, and sustainability. Chapters are written by leading scholars from a variety of disciplines including remote sensing, GIS, geography, urban planning, environmental science, and sustainability science, with case studies predominately drawn from North America and Europe. A review of the essential and emerging research areas in urban remote sensing including sensors, techniques, and applications, especially some critical issues that are shifting the ­directions in urban remote sensing research. Illustrated in full color throughout, including numerous relevant case studies and extensive discussions of important concepts and cutting-edge technologies to enable clearer understanding for non-technical audiences. Urban Remote Sensing, Second Edition will be of particular interest to upper-division undergraduate and graduate students, researchers and professionals working in the fields of remote sensing, geospatial information, and urban & environmental planning.
This book deals with recent developments and applications of environmental monitoring technologies, with emphasis on rapidly progressing optical and biological methods. Written by worldwide experts, this book will be of interest to environmental scientists in academia, research institutes, industry and the government.
Remote sensing stands as the defining technology in our ability to monitor coral reefs, as well as their biophysical properties and associated processes, at regional to global scales. With overwhelming evidence that much of Earth’s reefs are in decline, our need for large-scale, repeatable assessments of reefs has never been so great. Fortunately, the last two decades have seen a rapid expansion in the ability for remote sensing to map and monitor the coral reef ecosystem, its overlying water column, and surrounding environment. Remote sensing is now a fundamental tool for the mapping, monitoring and management of coral reef ecosystems. Remote sensing offers repeatable, quantitative assessments of habitat and environmental characteristics over spatially extensive areas. As the multi-disciplinary field of coral reef remote sensing continues to mature, results demonstrate that the techniques and capabilities continue to improve. New developments allow reef assessments and mapping to be performed with higher accuracy, across greater spatial areas, and with greater temporal frequency. The increased level of information that remote sensing now makes available also allows more complex scientific questions to be addressed. As defined for this book, remote sensing includes the vast array of geospatial data collected from land, water, ship, airborne and satellite platforms. The book is organized by technology, including: visible and infrared sensing using photographic, multispectral and hyperspectral instruments; active sensing using light detection and ranging (LiDAR); acoustic sensing using ship, autonomous underwater vehicle (AUV) and in-water platforms; and thermal and radar instruments. Emphasis and Audience This book serves multiple roles. It offers an overview of the current state-of-the-art technologies for reef mapping, provides detailed technical information for coral reef remote sensing specialists, imparts insight on the scientific questions that can be tackled using this technology, and also includes a foundation for those new to reef remote sensing. The individual sections of the book include introductory overviews of four main types of remotely sensed data used to study coral reefs, followed by specific examples demonstrating practical applications of the different technologies being discussed. Guidelines for selecting the most appropriate sensor for particular applications are provided, including an overview of how to utilize remote sensing data as an effective tool in science and management. The text is richly illustrated with examples of each sensing technology applied to a range of scientific, monitoring and management questions in reefs around the world. As such, the book is broadly accessible to a general audience, as well as students, managers, remote sensing specialists and anyone else working with coral reef ecosystems.
Remote Sensing plays a key role in monitoring the various manifestations of global climate change. It is used routinely in the assessment and mapping of biodiversity over large areas, in the monitoring of changes to the physical environment, in assessing threats to various components of natural systems, and in the identification of priority areas for conservation. This book presents the fundamentals of remote sensing technology, but rather than containing lengthy explanations of sensor specifications and operation, it concentrates instead on the application of the technology to key environmental systems. Each system forms the basis of a separate chapter, and each is illustrated by real world case studies and examples. Readership The book is intended for advanced undergraduate and graduate students in earth science, environmental science, or physical geography taking a course in environmental remote sensing. It will also be an invaluable reference for environmental scientists and managers who require an overview of the use of remote sensing in monitoring and mapping environmental change at regional and global scales. Additional resources for this book can be found at: http://www.wiley.com/go/purkis/remote.