Download Free Reliability Based Design Of Offshore Mooring Systems Book in PDF and EPUB Free Download. You can read online Reliability Based Design Of Offshore Mooring Systems and write the review.

This study proposes new methods for the reliability-based design of structural systems, with emphasis on offshore mooring systems. After a brief introduction to the mooring systems, two main objectives are discussed in this dissertation. The first objective is the calculation of the probability of failure of a structural system, which is an important input for a reliability-based design or any quantitative risk assessment. Two different methods are proposed for calculation of the probability of failure: a method based on the Monte Carlo simulations and a method based on the basic rules of probability, which is called the Progressive Reliability Method (PRM). Both methods are flexible to the definition of system failure. For example, the probability of a serviceability or ultimate-strength failure can be assessed using any of the two methods. It is shown that the two methods produce similar results, but PRM is preferred because it is exact and usually faster to implement. The second main objective in this dissertation is to develop a method for the optimization of the design of a structural system, given a target probability of failure. In this method, using the structural analysis of a preliminary design, the ratio of the optimal to the preliminary mean capacity of each component, which is called the Optimality Factor, is determined. Two design strategies are considered. First, an optimal design is intended to achieve the maximum system integrity. System integrity is defined as the balanced contribution of system components to its reliability. To quantify the system integrity, the Integrity Index is defined, and its calculation for various systems is discussed. Second, a designated failure scenario is considered, where some components serve as a fuse to protect some other components. This design strategy is especially applicable to mooring systems with drag anchor foundations because normally, if a drag anchor is pulled out from the seabed, it can cause significant damages to nearby subsea facilities. Using the rules of probability, a method is then developed to calculate the optimality factor of each component. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149292
Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms. It is also uniquely compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to increasing codification and to code harmonization across national boundaries and material types. Already some codes of practice describe the principles and requirements for safety, serviceability, and durability of structures in reliability terms. This book presents practical computational methods in concrete steps that can be followed by practitioners and students. It also provides geotechnical examples illustrating reliability analysis and design. It aims to encourage geotechnical engineers to apply reliability-based design in a realistic context that recognises the complex variabilities in geomaterials and model uncertainties arising from a profession steeped in empiricism. By focusing on learning through computations and examples, this book serves as a valuable reference for engineers and a resource for students.
The mooring system is a vital component of various floating facilities in the oil, gas, and renewables industries. However, there is a lack of comprehensive technical books dedicated to the subject. Mooring System Engineering for Offshore Structures is the first book delivering in-depth knowledge on all aspects of mooring systems, from design and analysis to installation, operation, maintenance and integrity management. The book gives beginners a solid look at the fundamentals involved during mooring designs with coverage on current standards and codes, mooring analysis and theories behind the analysis techniques. Advanced engineers can stay up-to-date through operation, integrity management, and practical examples provided. This book is recommended for students majoring in naval architecture, marine or ocean engineering, and allied disciplines in civil or mechanical engineering. Engineers and researchers in the offshore industry will benefit from the knowledge presented to understand the various types of mooring systems, their design, analysis, and operations. - Understand the various types of mooring systems and the theories behind mooring analysis - Gain practical experience and lessons learned from worldwide case studies - Combine engineering fundamentals with practical applications to solve today's offshore challenges
This book presents a unique collection of contributions from some of the foremost scholars in the field of risk and reliability analysis. Combining the most advanced analysis techniques with practical applications, it is one of the most comprehensive and up-to-date books available on risk-based engineering. All the fundamental concepts needed to conduct risk and reliability assessments are covered in detail, providing readers with a sound understanding of the field and making the book a powerful tool for students and researchers alike. This book was prepared in honor of Professor Armen Der Kiureghian, one of the fathers of modern risk and reliability analysis.
Mooring systems for floating facilities that are used offshore to produce oil and gas, consisting of individual mooring lines and foundations, are currently designed on the basis of individual components and on a case-by-case basis. The most heavily loaded line and anchor are checked under extreme loading conditions (hurricane and loop current) with the system of lines intact and with one line removed. However, the performance of the entire mooring system depends more directly on the performance of the system of lines and foundations rather than on the performance of a single component. In this study, a floating production system design originally developed by the industry consortium, DeepStar, was chosen for study. The mooring system was designed for three different nominal water depths: 1000, 2000 and 3000 m. It is a classic spar with steel mooring lines in 1000 m of water and polyester mooring lines in deeper depths. Based on simulated results of loads on mooring lines and foundations using a numerical model, reliability analyses were conducted using representative probabilistic descriptions of the extreme met-ocean conditions, hurricanes and loop currents, in the Gulf of Mexico. The probability of failure of individual mooring line components during a 20-year design life is calculated first, followed by that of a complete mooring line which consists of top and bottom chains, a steel cable or polyester rope at the middle and a suction caisson foundation, and finally that of the mooring system. It is found that foundations have failure probabilities that are more than an order of magnitude smaller than those for lines under extreme loading. Mooring systems exhibit redundancy in that the failure of the most heavily loaded component during an extreme event does not necessarily lead to failure of the system. The system reliability and redundancy are greater for the taut versus semi-taut systems and is greater for designs governed by loop current versus hurricane events. Although this study concerns about the mooring systems of a classical spar, the methodology of the reliability analysis and the conclusions made in this study may have important implications to the other deepwater mooring systems.
Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.
To best serve current and future generations, infrastructure needs to be resilient to the changing world while using limited resources in a sustainable manner. Research on and funding towards sustainability and resilience are growing rapidly, and significant research is being carried out at a number of institutions and centers worldwide. This handbook brings together current research on sustainable and resilient infrastructure and, in particular, stresses the fundamental nexus between sustainability and resilience. It aims to coalesce work from a large and diverse group of contributors across a wide range of disciplines including engineering, technology and informatics, urban planning, public policy, economics, and finance. Not only does it present a theoretical formulation of sustainability and resilience but it also demonstrates how these ideals can be realized in practice. This work will provide a reference text to students and scholars of a number of disciplines.
This book pursues the ambitious goal of combining floating wind turbine design optimization and reliability assessment, which has in fact not been done before. The topic is organized into a series of very ambitious objectives, which start with an initial state-of-the-art review, followed by the development of high-fidelity frameworks for a disruptive way to design next generation floating offshore wind turbine (FOWT) support structures. The development of a verified aero-hydro-servo-elastic coupled numerical model of dynamics for FOWTs and a holistic framework for automated simulation and optimization of FOWT systems, which is later used for the coupling of design optimization with reliability assessment of FOWT systems in a computationally and time-efficient manner, has been an aim of many groups internationally towards implementing a performance-based/goal-setting approach in the design of complex engineering systems. The outcomes of this work quantify the benefits of an optimal design with a lower mass while fulfilling design constraints. Illustrating that comprehensive design methods can be combined with reliability analysis and optimization algorithms towards an integrated reliability-based design optimization (RBDO) can benefit not only the offshore wind energy industry but also other applications such as, among others, civil infrastructure, aerospace, and automotive engineering.
This book addresses current and emerging challenges facing those working in offshore construction, design and research. Keynote papers from leading industry practitioners and academics provide a comprehensive overview of central topics covering deepwater anchoring, pipelines, foundation solutions for offshore wind turbines, site investigation, geoh
This volume contains the papers presented at IALCCE2016, the fifth International Symposium on Life-Cycle Civil Engineering (IALCCE2016), to be held in Delft, The Netherlands, October 16-19, 2016. It consists of a book of extended abstracts and a DVD with full papers including the Fazlur R. Khan lecture, keynote lectures, and technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special focus on structural damage processes, life-cycle design, inspection, monitoring, assessment, maintenance and rehabilitation, life-cycle cost of structures and infrastructures, life-cycle performance of special structures, and life-cycle oriented computational tools. The aim of the editors is to provide a valuable source for anyone interested in life-cycle of civil infrastructure systems, including students, researchers and practitioners from all areas of engineering and industry.