Download Free Regularization Of Ill Posed Problems By Conjugate Gradient Type Methods Book in PDF and EPUB Free Download. You can read online Regularization Of Ill Posed Problems By Conjugate Gradient Type Methods and write the review.

The conjugate gradient method is a powerful tool for the iterative solution of self-adjoint operator equations in Hilbert space.This volume summarizes and extends the developments of the past decade concerning the applicability of the conjugate gradient method (and some of its variants) to ill posed problems and their regularization. Such problems occur in applications from almost all natural and technical sciences, including astronomical and geophysical imaging, signal analysis, computerized tomography, inverse heat transfer problems, and many more This Research Note presents a unifying analysis of an entire family of conjugate gradient type methods. Most of the results are as yet unpublished, or obscured in the Russian literature. Beginning with the original results by Nemirovskii and others for minimal residual type methods, equally sharp convergence results are then derived with a different technique for the classical Hestenes-Stiefel algorithm. In the final chapter some of these results are extended to selfadjoint indefinite operator equations. The main tool for the analysis is the connection of conjugate gradient type methods to real orthogonal polynomials, and elementary properties of these polynomials. These prerequisites are provided in a first chapter. Applications to image reconstruction and inverse heat transfer problems are pointed out, and exemplarily numerical results are shown for these applications.
The conjugate gradient method is a powerful tool for the iterative solution of self-adjoint operator equations in Hilbert space.This volume summarizes and extends the developments of the past decade concerning the applicability of the conjugate gradient method (and some of its variants) to ill posed problems and their regularization. Such problems occur in applications from almost all natural and technical sciences, including astronomical and geophysical imaging, signal analysis, computerized tomography, inverse heat transfer problems, and many more This Research Note presents a unifying analysis of an entire family of conjugate gradient type methods. Most of the results are as yet unpublished, or obscured in the Russian literature. Beginning with the original results by Nemirovskii and others for minimal residual type methods, equally sharp convergence results are then derived with a different technique for the classical Hestenes-Stiefel algorithm. In the final chapter some of these results are extended to selfadjoint indefinite operator equations. The main tool for the analysis is the connection of conjugate gradient type methods to real orthogonal polynomials, and elementary properties of these polynomials. These prerequisites are provided in a first chapter. Applications to image reconstruction and inverse heat transfer problems are pointed out, and exemplarily numerical results are shown for these applications.
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.
Iteration regularization, i.e., utilization of iteration methods of any form for the stable approximate solution of ill-posed problems, is one of the most important but still insufficiently developed topics of the new theory of ill-posed problems. In this monograph, a general approach to the justification of iteration regulari zation algorithms is developed, which allows us to consider linear and nonlinear methods from unified positions. Regularization algorithms are the 'classical' iterative methods (steepest descent methods, conjugate direction methods, gradient projection methods, etc.) complemented by the stopping rule depending on level of errors in input data. They are investigated for solving linear and nonlinear operator equations in Hilbert spaces. Great attention is given to the choice of iteration index as the regularization parameter and to estimates of errors of approximate solutions. Stabilizing properties such as smoothness and shape constraints imposed on the solution are used. On the basis of these investigations, we propose and establish efficient regularization algorithms for stable numerical solution of a wide class of ill-posed problems. In particular, descriptive regularization algorithms, utilizing a priori information about the qualitative behavior of the sought solution and ensuring a substantial saving in computational costs, are considered for model and applied problems in nonlinear thermophysics. The results of calculations for important applications in various technical fields (a continuous casting, the treatment of materials and perfection of heat-protective systems using laser and composite technologies) are given.
This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.
This fourth volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech Processing. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech Processing - Presents core principles and shows their application - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic
Working computationally in applied mathematics is the very essence of dealing with real-world problems in science and engineering. Approximation theory-on the borderline between pure and applied mathematics- has always supplied some of the most innovative ideas, computational methods, and original approaches to many types of problems. The f
This volume presents the proceedings of the 11th Conference on Problems and Methods in Mathematical Physics (11th TMP), held in Chemnitz, March 25-28, 1999. The conference was dedicated to the memory of Siegfried Prössdorf, who made important contributions to the theory and numerical analysis of operator equations and their applications in mathematical physics and mechanics. The main part of the book comprises original research papers. The topics are ranging from integral and pseudodifferential equations, boundary value problems, operator theory, boundary element and wavelet methods, approximation theory and inverse problems to various concrete problems and applications in physics and engineering, and reflect Prössdorf's broad spectrum of research activities. The volume also contains articles describing the life and mathematical achievements of Siegfried Prössdorf and includes a list of his publications. The book is addressed to a wide audience in the mathematical and engineering sciences.
The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.
Inverse problems are concerned with determining causes for observed or desired effects. Problems of this type appear in many application fields both in science and in engineering. The mathematical modelling of inverse problems usually leads to ill-posed problems, i.e., problems where solutions need not exist, need not be unique or may depend discontinuously on the data. For this reason, numerical methods for solving inverse problems are especially difficult, special methods have to be developed which are known under the term "regularization methods". This volume contains twelve survey papers about solution methods for inverse and ill-posed problems and about their application to specific types of inverse problems, e.g., in scattering theory, in tomography and medical applications, in geophysics and in image processing. The papers have been written by leading experts in the field and provide an up-to-date account of solution methods for inverse problems.