Download Free Regression For Health And Social Science Book in PDF and EPUB Free Download. You can read online Regression For Health And Social Science and write the review.

Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: •interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. •thorough integration of teaching statistical theory with teaching data processing and analysis. •teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.
Providing beginners with a background to the frequently-used technique of linear regression, this text provides a heuristic explanation of the procedures and terms used in regression analysis and has been written at the most elementary level.
For graduate students in the social and health sciences, featuring essential concepts and equations most often needed in scholarly publications. Uses excerpts from the scholarly literature in these fields to introduce new concepts. Uses publicly-available data that are regularly used in social and health science publications to introduce Stata code and illustrate concepts and interpretation. Thoroughly integrates the teaching of statistical theory with teaching data processing and analysis. Offers guidance about planning projects and organizing code for reproducibility Shows how to recognize critiques of the constructions, terminology, and interpretations of statistics. New edition focuses on Stata, with code integrated into the chapters (rather than appendices, as in the first edition) includes Stata’s factor variables and margins commands and Long and Freese’s (2014) spost13 commands, to simplify programming and facilitate interpretation.
Quantile Regression, the first book of Hao and Naiman′s two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao and Naiman show, in their application of quantile regression to empirical research, how this model yields a more complete understanding of inequality. Inequality is a perennial concern in the social sciences, and recently there has been much research in health inequality as well. Major software packages have also gradually implemented quantile regression. Quantile Regression will be of interest not only to the traditional social science market but other markets such as the health and public health related disciplines. Key Features: Establishes a natural link between quantile regression and inequality studies in the social sciences Contains clearly defined terms, simplified empirical equations, illustrative graphs, empirical tables and graphs from examples Includes computational codes using statistical software popular among social scientists Oriented to empirical research
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.
Spatial Regression Models for the Social Sciences shows researchers and students how to work with spatial data without the need for advanced mathematical statistics. Focusing on the methods that are commonly used by social scientists, Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it by connecting it to social science research topics. Throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us.
Regression Analysis for Social Sciences presents methods of regression analysis in an accessible way, with each method having illustrations and examples. A broad spectrum of methods are included: multiple categorical predictors, methods for curvilinear regression, and methods for symmetric regression. This book can be used for courses in regression analysis at the advanced undergraduate and beginning graduate level in the social and behavioral sciences. Most of the techniques are explained step-by-step enabling students and researchers to analyze their own data. Examples include data from the social and behavioral sciences as well as biology, making the book useful for readers with biological and biometrical backgrounds. Sample command and result files for SYSTAT are included in the text. Presents accessible methods of regression analysis Includes a broad spectrum of methods Techniques are explained step-by-step Provides sample command and result files for SYSTAT
A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.
Understanding Regression Analysis: An Introductory Guide by Larry D. Schroeder, David L. Sjoquist, and Paula E. Stephan presents the fundamentals of regression analysis, from its meaning to uses, in a concise, easy-to-read, and non-technical style. It illustrates how regression coefficients are estimated, interpreted, and used in a variety of settings within the social sciences, business, law, and public policy. Packed with applied examples and using few equations, the book walks readers through elementary material using a verbal, intuitive interpretation of regression coefficients, associated statistics, and hypothesis tests. The Second Edition features updated examples and new references to modern software output.
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.