Download Free Refractory Ceramic Products Book in PDF and EPUB Free Download. You can read online Refractory Ceramic Products and write the review.

This work describes current engineering practices and techniques in the fields of ceramics in the Soviet Union. Appearing for the first time in English, the book will be extremely useful as a text for ceramic education and as a reference guide for anyone in the field. Techniques are treated in detail not heretofore available. Contents Preface * Part I, Building Ceramics: Classification of Products * Wall, Roof, and Facing Materials * Ceramzite (light, porous ceramic) * Stove Tiles and Majolica Parts * Stoneware * Part II, Refractory Materials: Classification of Refractories * Properties of Refractories * Chamotte Products * Products with a High Alumina Content * Dinas * Magnesite Refractories * Forsterite Refractories * Chromite Refractorries and Their mixture with Magnesites * Refractories Containing Zirconia * Dolomite Refractories * Refractories Containing Carbon * Highly Refractory Materials and Pure Oxide Products * Refractory Mortars, Cements, and Concrete, Light weight (heat-insulating) Refractories * Part III, Fine Ceramics: Raw Materials *Preparation of Ceramic Paster * Molding and Shaping * Kiln Drying and Firing * Glazing * Glazes * Ceramic Colors * Sorting, Finishing and Decorating * Porcelain * Household and Art China * Porcelain Used in Electrical Engineering * Electric Insulators and Other Parts Made of Special Pastes * Fine Stoneware * Faience and Semiporcelain * Faience and Semiporcelain for Sanitation and Building * Glazed Faience Tiles * Bibliography
All Refractories Are Ceramics but Not All Ceramics Are Refractories Ceramics and refractories cover a wide range of fields and applications, and their relevance can be traced as far back as 24,000 BC to the first man-made piece of earthenware, and as recently as the late 1900s when ceramics and ceramic matrix composites were developed to withstand ultra-high temperatures. Beginning with a detailed history of ceramics, An Introduction to Ceramics and Refractories examines every aspect of ceramics and refractories, and explores the connection between them. The book establishes refractories as a class of ceramics with high fusion points, introduces the fundamentals of refractories and ceramics, and also addresses several applications for each. Understand Ceramic Properties and Refractory Behavior The book details applications for natural and synthetic ceramics, as well as traditional and engineering applications. It focuses on the various thermal and thermo-mechanical properties of ceramics, classifies refractories, describes the principles of thermodynamics as applied to refractories, and highlights new developments and applications in the ceramic and refractory fields. It also presents end-of-chapter problems and a relevant case study. Divided into three sections, this text: Introduces and details the applications of ceramics and refractories Discusses the selection of materials and the two stages in selection Describes the phase equilibriums in ceramic and refractory systems Outlines the three important systems: unary, binary, and ternary Considers corrosion of ceramics and refractories, failures in ceramics and refractories, and the design aspects Addresses bonding, structures of ceramics, defects in ceramics, and ceramics’ microstructures Covers the production of ceramic powders starting from the raw materials Explains four forming methods Highlights three types of thermal treatments Defines mechanical properties, and thermal and thermo-mechanical properties Classifies materials and designates classes Addressing topics that include corrosion, applications, thermal properties, and types of refractories, An Introduction to Ceramics and Refractories provides you with a basic knowledge of the fundamentals of refractories and ceramics, and presents a clear connection between refractory behavior and ceramic properties to the practicing engineer.
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
This valuable handbook details the various monolithic refractories currently in use, and pays particular attention to their chemical and physical behaviors during manufacturing, installation, and the duty cycle. It addresses, from the practitioner's point of view, the critical aspects of reactions involved with the refractory body as it approaches the used temperature with the processing environment. To ensure optimum performance, it describes the application, installation, and design of refractory components. The handbook includes suitable tables and figures, and provides an historical perspective on the evolution of the refractory industry. Practicing ceramic engineers, scientists, raw material suppliers, and research and development personnel in the refractory manufacturing industry will find this book invaluable. Also suitable as a reference for courses in ceramic engineering specializing in refractories.
High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.
This is a concise, up-to-date book that covers a wide range of important ceramic materials used in modern technology. Chapters provide essential information on the nature of these key ceramic raw materials including their structure, properties, processing methods and applications in engineering and technology. Treatment is provided on materials such as alumina, aluminates, Andalusite, kyanite, and sillimanite. The chapter authors are leading experts in the field of ceramic materials. An ideal text for graduate students and practising engineers in ceramic engineering, metallurgy, and materials science and engineering.
This book explains the refractories from different fundamental aspects, even with the support of phase diagrams, and also details the prominent applications of these industrial materials. The initial chapters cover fundamentals of refractories, classifications, properties, and testing, while later chapters describe different common shaped and unshaped refractories in detail and special refractories in a concise manner. The second edition includes new classifications, microstructures, the effect of impurities with binary and ternary phase diagrams, and recent trends in refractories including homework problems and an updated bibliography. Features: Provides exclusive material on refractories Discusses detailed descriptions of different shaped and unshaped refractories Covers concepts like environmental issues, recycling, and nanotechnology Explores details on testing and specifications including thermochemical and corrosion behavior Includes a separate chapter on trends of refractories and other issues This book is aimed at junior/senior undergraduate students and researchers of ceramics, metallurgical engineering, and refractories.
This book describes and comments on the results of research devoted to the studies of phase assemblages in the CaO-SiO2-Al2O3-Fe oxides chemical system, their stability and their evolution in our environment (temperature, pressure). Its aim is to be a research support, not only for researchers and development engineers but also more generally for others interested in materials sciences. The book is divided in two parts; the first devoted to a description of 'the system' using phase diagrams. The second explores the properties and uses of some of the minerals that are in widespread industrial and commercial use. Much of the work presented in this book is fully original and corresponds to the research undertaken by François Sorrentino from his time at the chemistry department of the University of Aberdeen during the early 1970's, to recent years when he has resumed his interest in mineral research, particularly related to the synthesis of calcium silicates and calcium aluminates, and their industrial manufacture.