Download Free Reducing The Impacts Of Coastal Hazards Book in PDF and EPUB Free Download. You can read online Reducing The Impacts Of Coastal Hazards and write the review.

Hurricane- and coastal-storm-related losses have increased substantially during the past century, largely due to increases in population and development in the most susceptible coastal areas. Climate change poses additional threats to coastal communities from sea level rise and possible increases in strength of the largest hurricanes. Several large cities in the United States have extensive assets at risk to coastal storms, along with countless smaller cities and developed areas. The devastation from Superstorm Sandy has heightened the nation's awareness of these vulnerabilities. What can we do to better prepare for and respond to the increasing risks of loss? Reducing Coastal Risk on the East and Gulf Coasts reviews the coastal risk-reduction strategies and levels of protection that have been used along the United States East and Gulf Coasts to reduce the impacts of coastal flooding associated with storm surges. This report evaluates their effectiveness in terms of economic return, protection of life safety, and minimization of environmental effects. According to this report, the vast majority of the funding for coastal risk-related issues is provided only after a disaster occurs. This report calls for the development of a national vision for coastal risk management that includes a long-term view, regional solutions, and recognition of the full array of economic, social, environmental, and life-safety benefits that come from risk reduction efforts. To support this vision, Reducing Coastal Risk states that a national coastal risk assessment is needed to identify those areas with the greatest risks that are high priorities for risk reduction efforts. The report discusses the implications of expanding the extent and levels of coastal storm surge protection in terms of operation and maintenance costs and the availability of resources. Reducing Coastal Risk recommends that benefit-cost analysis, constrained by acceptable risk criteria and other important environmental and social factors, be used as a framework for evaluating national investments in coastal risk reduction. The recommendations of this report will assist engineers, planners and policy makers at national, regional, state, and local levels to move from a nation that is primarily reactive to coastal disasters to one that invests wisely in coastal risk reduction and builds resilience among coastal communities.
This book covers the gamut of coastal hazards that result from short-term low-frequency events and have high-magnitude and far-reaching impacts on coastal zones the world over. Much of the world’s population now lives in low-lying coastal zones that are inherently vulnerable to natural hazards such as flooding from hurricanes, tropical storms and northeastern storm surges; shoreline (beach and dune) erosion; cliff and bluff failures; and saltwater intrusion in coastal aquifers used for drinking water supplies. In addition to the usual range of hydrometeorological disasters in coastal zones, this book covers tsunami impacts and warning systems as well as global perspectives of sea-level rise impacts and human perceptions of potential vulnerabilities resulting from rip currents that cause many drownings each year on beaches. Today, the use of numerical models that help predict vulnerabilities and provide a basis for shore protection measures is important in modern scientific and engineering systems. Final considerations focus on human actions in the form of the urbanization and industrialization of the coast, shore protection measures, and indicate how environmental degradation around coastal conurbations exacerbates the potential for unwanted impacts. Strategies for environmental management in coastal zones, from low-lying wetlands to high cliffs and rocky promontories, are highlighted as a means of living in harmony with Nature and not trying to conquer it.
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
Sea and Ocean Hazards, Risks and Disasters provides a scientific approach to those hazards and disasters related to the Earth's coasts and oceans. This is the first book to integrate scientific, social, and economic issues related to disasters such as hazard identification, risk analysis, and planning, relevant hazard process mechanics, discussions of preparedness, response, and recovery, and the economics of loss and remediation. Throughout the book cases studies are presented of historically relevant hazards and disasters as well as the many recent catastrophes. - Contains contributions from experts in the field selected by a world-renowned editorial board - Cutting-edge discussion of natural hazard topics that affect the lives and livelihoods of millions of humans worldwide - Numerous full-color tables, GIS maps, diagrams, illustrations, and photographs of hazardous processes in action will be included
This timely book is about how to design alternatives to reduce coastal flood and wave damage, erosion, and loss of ecosystems facing an unknown future of sea level rise. The latest theories are interlaced with applied examples from the authors' 48 years of experience in teaching, research, and as a practicing, professional engineer in coastal engineering. The design process takes into consideration all the design constraints (scientific, engineering, economic, environmental, social/political/institutional, aesthetic, and media) to meet today's client needs, expectations, and budgets for an uncertain future.The book is organized as a textbook for graduate students. And, it is a self-contained reference for government and consulting engineers responsible for finding solutions to coastal hazards facing the world's coastal populations. New solutions are included in the book that help people of all socio-economic levels living at the coast. Both risk reduction metrics quantified in monetary terms, and increased resilience metrics quantified as vulnerability reduction must now be taken into consideration to make equitable design decisions on hazard mitigation alternatives.In the Anthropocene Era, under 'deep uncertainty' in global mean sea level predictions for the future, today's designs must mitigate today's storm damages, and be adaptable for the unpredictable water levels and storms of the future. This book includes a design 'philosophy' for water levels to year 2050 and for the long term from 2050 to 2100. Multiple spreadsheets are provided and organized to aid the design process.This is an exciting time to be 'thinkers' as Civil/Coastal engineers.Related Link(s)
Coastal Flood Risk Reduction: The Netherlands and the U.S. Upper Texas Coast represents the culmination of a 5-year international research and education partnership funded by the US National Science Foundation (NSF) and more than 10 years of collaboration between Dutch and U.S. flood experts on the basic issue of how to protect society from growing flood risks. Multiple case studies integrating the fields of engineering, hydrology, landscape architecture, economics, and planning address the underlying characteristics of physical flood risks and their prediction; human communities and the associated built environment; physical, social, and built-environment variables; and mitigation techniques. In recognition of the lack of systematic research and the growing societal need to better understand flood impacts, this edited book provides an in-depth, comparative evaluation of flood problems and solutions in two key places: the Netherlands and the U.S. Upper Texas Coast. Both regions are extremely flood-prone and have experienced continual adverse impacts throughout their histories. For researchers in flood management, geographers, hydrologists, environmental studies, and social science as well as policymakers and decision-makers in flood management authorities and related industries, this book provides an essential resource. - Introduces integrated comparative work on flood risk reduction and management across disciplines and international boundaries - Presents chapters written by dozens of experts across six U.S. and Dutch universities that have formally participated in the international research and education program funded by the U.S. National Science Foundation (NSF) - Provides a basis for understanding and mitigating flood risk over a range of necessary perspectives, from modeling inputs to design solutions - Integrates cutting-edge scientific methods and state-of-the-art knowledge with examples of specific solutions and how they are being implemented in each national case study
Climate change is occurring, is caused largely by human activities, and poses significant risks for-and in many cases is already affecting-a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America's Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. As decision makers respond to these risks, the nation's scientific enterprise can contribute through research that improves understanding of the causes and consequences of climate change and also is useful to decision makers at the local, regional, national, and international levels. The book identifies decisions being made in 12 sectors, ranging from agriculture to transportation, to identify decisions being made in response to climate change. Advancing the Science of Climate Change calls for a single federal entity or program to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. Seven cross-cutting research themes are identified to support this scientific enterprise. In addition, leaders of federal climate research should redouble efforts to deploy a comprehensive climate observing system, improve climate models and other analytical tools, invest in human capital, and improve linkages between research and decisions by forming partnerships with action-oriented programs.
Tide gauges show that global sea level has risen about 7 inches during the 20th century, and recent satellite data show that the rate of sea-level rise is accelerating. As Earth warms, sea levels are rising mainly because ocean water expands as it warms; and water from melting glaciers and ice sheets is flowing into the ocean. Sea-level rise poses enormous risks to the valuable infrastructure, development, and wetlands that line much of the 1,600 mile shoreline of California, Oregon, and Washington. As those states seek to incorporate projections of sea-level rise into coastal planning, they asked the National Research Council to make independent projections of sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account regional factors that affect sea level. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future explains that sea level along the U.S. west coast is affected by a number of factors. These include: climate patterns such as the El Niño, effects from the melting of modern and ancient ice sheets, and geologic processes, such as plate tectonics. Regional projections for California, Oregon, and Washington show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections. However, projections are lower north of Cape Mendocino because the land is being pushed upward as the ocean plate moves under the continental plate along the Cascadia Subduction Zone. However, an earthquake magnitude 8 or larger, which occurs in the region every few hundred to 1,000 years, would cause the land to drop and sea level to suddenly rise.