Download Free Redox Proteomics Book in PDF and EPUB Free Download. You can read online Redox Proteomics and write the review.

Methodology and applications of redox proteomics The relatively new and rapidly changing field of redox proteomics has the potential to revolutionize how we diagnose disease, assess risks, determine prognoses, and target therapeutic strategies for people with inflammatory and aging-associated diseases. This collection brings together, in one comprehensive volume, a broad array of information and insights into normal and altered physiology, molecular mechanisms of disease states, and new applications of the rapidly evolving techniques of proteomics. Written by some of the finest investigators in this area, Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases examines the key topics of redox proteomics and redox control of cellular function, including: * The role of oxidized proteins in various disorders * Pioneering studies on the development of redox proteomics * Analytical methodologies for identification and structural characterization of proteins affected by oxidative/nitrosative modifications * The response and regulation of protein oxidation in different cell types * The pathological implications of protein oxidation for conditions, including asthma, cardiovascular disease, diabetes, preeclampsia, and Alzheimer's disease Distinguished by its in-depth discussions, balanced methodological approach, and emphasis on medical applications and diagnosis development, Redox Proteomics is a rich resource for all professionals with an interest in proteomics, cellular physiology and its alterations in disease states, and related fields.
Methodology and applications of redox proteomics The relatively new and rapidly changing field of redox proteomics has the potential to revolutionize how we diagnose disease, assess risks, determine prognoses, and target therapeutic strategies for people with inflammatory and aging-associated diseases. This collection brings together, in one comprehensive volume, a broad array of information and insights into normal and altered physiology, molecular mechanisms of disease states, and new applications of the rapidly evolving techniques of proteomics. Written by some of the finest investigators in this area, Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases examines the key topics of redox proteomics and redox control of cellular function, including: * The role of oxidized proteins in various disorders * Pioneering studies on the development of redox proteomics * Analytical methodologies for identification and structural characterization of proteins affected by oxidative/nitrosative modifications * The response and regulation of protein oxidation in different cell types * The pathological implications of protein oxidation for conditions, including asthma, cardiovascular disease, diabetes, preeclampsia, and Alzheimer's disease Distinguished by its in-depth discussions, balanced methodological approach, and emphasis on medical applications and diagnosis development, Redox Proteomics is a rich resource for all professionals with an interest in proteomics, cellular physiology and its alterations in disease states, and related fields.
The studies in this book demonstrated that increased oxidative stress in brain play a significant role in age-related cognitive impairment. Moreover, such increased oxidative stress leads to specific protein oxidation in the brain of cognitive impaired subject, thereby leading to cognitive function impairment. Moreover, the functional alterations of the proteins identified by proteomics in this book may leads to impaired metabolism, decline antioxidant system, and damaged synaptic communication. Ultimately, impairment of these processes lead to neuronal damages and cognitive decline. This book also show that several of the up- regulated and oxidized proteins in the brains of normal aging mice identified are known to be oxidized in neurodegenerative diseases as well, suggesting that the expression levels of certain proteins may increase as a compensatory response to oxidative stress. This compensation would allow for the maintenance of proper molecular functions in normal aging brains and protection against neurodegeneration.
Many physiological conditions such as host defense or aging and pathological conditions such as neurodegenerative diseases, and diabetes are associated with the accumulation of high levels of reactive oxygen species and reactive nitrogen species. This generates a condition called oxidative stress. Low levels of reactive oxygen species, however, which are continuously produced during aerobic metabolism, function as important signaling molecules, setting the metabolic pace of cells and regulating processes ranging from gene expression to apoptosis. For this book we would like to recruit the experts in the field of redox chemistry, bioinformatics and proteomics, redox signaling and oxidative stress biology to discuss how organisms achieve the appropriate redox balance, the mechanisms that lead to oxidative stress conditions and the physiological consequences that contribute to aging and disease.
This new edited volume in the Springer Subcellular Biochemistry Series presents a comprehensive, state-of-the-art overview of the proteomics of peroxisomes derived from mammalian, Drosophila, fungal, and plant origin, and contains contributions from leading experts in the field. The development of sensitive proteomics and mass spectrometry technologies, combined with bioinformatics approaches now allow the identification of low-abundance and transient peroxisomal proteins and permits to identify the complete proteome of peroxisomes, with the consequent increase of our knowledge of the metabolic and regulatory networks of these important cellular organelles. The book lines-up with these developments and is organized in four sections including: (i) mass spectrometry-based organelle proteomics; (ii) prediction of peroxisomal proteomes; (iii) analysis of peroxisome proteome interaction networks; and (iv) peroxisomes in relation to other subcellular compartments. The editor Luis A. del Río is Professor ad honorem of the Spanish National Research Council (CSIC) in the Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell & Molecular Biology of Plants, at the Estación Experimental del Zaidín, Granada, Spain. Del Río’s research group focuses on the metabolism of reactive oxygen species (ROS), reactive nitrogen species (RNS) and antioxidants in plant peroxisomes, and the ROS- and RNS-dependent role of peroxisomes in plant cell signalling. The editor Michael Schrader is Professor of Cell Biology & Cytopathology in the Department of Biosciences at the University of Exeter, UK. Using mammalian peroxisomes as model organelles, Prof. Schrader and his team aim to unravel the molecular machinery and signalling pathways that mediate and regulate the formation, dynamics and abundance of these medically relevant cellular compartments.
Proteomics in Food Science: From Farm to Fork is a solid reference providing concepts and practical applications of proteomics for those in various disciplines of food science. The book covers a range of methods for elucidating the identity or composition of specific proteins in foods or cells related to food science, from spoilage organisms, to edible components. A variety of analytical platforms are described, ranging from the usage of simple electrophoresis, to more sophisticated mass spectrometry and bio-informatic platforms. The book is designed for food scientists, technologists, food industry workers, microbiologists, and public health workers, and can also be a valuable reference book for students. Includes a variety of analytical platforms, ranging from simple electrophoresis to more sophisticated mass spectrometry and bio-informatic platforms Presents analytical techniques for each food domain, including beverages, meats, dairy and eggs, fruit, fish/seafood, cereals, nuts, and grains that range from sample collection, proportion, and storage analysis Provides applications of proteomics in hot topics area of food safety, including food spoilage, pathogenic organisms, and allergens Covers major pathogens of concern e.g., Salmonella and applications to animal husbandry
There have been several advancements made in high-throughput protein technologies creating immense possibilities for studying proteomics on a large scale. Researchers are exploring various proteomic techniques to unravel the mystery of plant stress tolerance mechanisms. Plant Proteomics: Implications in Growth, Quality Improvement, and Stress Resilience introduces readers to techniques and methodologies of proteomics and explains different physiological phenomena in plants and their responses to various environmental cues and defense mechanisms against pathogens. The main emphasis is on research involving applications of proteomics to understand different aspects of the life cycle of plant species including dormancy, flowering, photosynthetic efficiency, nitrogen assimilation, accumulation of nutritional parameters, secondary metabolite production, reproduction and grain yield as well as signalling responses during abiotic and biotic stresses. The book takes a unique approach, encompassing high throughput and sophisticated proteomic techniques while integrating proteomics with other “omics.” Features: Integrates the branch of proteomics with other “omics” approaches including genomics and metabolomics, giving a holistic view of the overall “omics” approaches. Covers various proteomics approaches for the identification of biological processes, future perspectives, and upcoming applications to identify diverse genes in plants. Presents readers with various proteomics tools for the improvement of plant growth, quality, and resilience against climate change, and pathogen infection. Enables researchers in identifying novel proteins that could be used as target to generate plants with improved traits. Prof. Aryadeep Roychoudhury is currently working as Professor in the Discipline of Life Sciences, Indira Gandhi National Open University, New Delhi, India. Earlier, he served as Assistant Professor at the Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata, West Bengal, India. He received his B.Sc. (Hons.) in Botany from Presidency College, Kolkata, and M.Sc. in Biophysics and Molecular Biology, University of Calcutta, West Bengal, India. He earned his Ph.D. from Jadavpur University, Kolkata in the area of stress biology in plants. Following his Ph.D. work, he joined as Research Associate (Post doctorate) at the University of Calcutta, pursuing translational research on transgenic rice. He is presently involved in active research in the field of abiotic stress responses in plants with perspectives to the physiology, molecular biology and cell signaling under diverse stress conditions. He has 23 years of research experience in the concerned discipline. Prof. Roychoudhury has handled several government-funded projects as principal investigator and supervised five Ph.D. students as principal investigator. He has published over 250 articles in peer-reviewed journals and chapters in books of international and national repute. He has edited many books with Wiley, Elsevier, and Springer, and has also handled Special Issues as Guest Editor for several renowned international journals. He is a regular reviewer of articles in high-impact, international journals, Life Member of different scientific associations and societies, and the recipient of the Young Scientist Award 2019, conferred upon him by International Foundation for Environment and Ecology, at University of Allahabad, Prayagraj, Uttar Pradesh. His name is included in the Stanford University’s List of World’s Top 2% Influential Scientists.
PROVIDES STRATEGIES AND CONCEPTS FOR UNDERSTANDING CHEMICAL PROTEOMICS, AND ANALYZING PROTEIN FUNCTIONS, MODIFICATIONS, AND INTERACTIONS—EMPHASIZING MASS SPECTROMETRY THROUGHOUT Covering mass spectrometry for chemical proteomics, this book helps readers understand analytical strategies behind protein functions, their modifications and interactions, and applications in drug discovery. It provides a basic overview and presents concepts in chemical proteomics through three angles: Strategies, Technical Advances, and Applications. Chapters cover those many technical advances and applications in drug discovery, from target identification to validation and potential treatments. The first section of Mass Spectrometry-Based Chemical Proteomics starts by reviewing basic methods and recent advances in mass spectrometry for proteomics, including shotgun proteomics, quantitative proteomics, and data analyses. The next section covers a variety of techniques and strategies coupling chemical probes to MS-based proteomics to provide functional insights into the proteome. In the last section, it focuses on using chemical strategies to study protein post-translational modifications and high-order structures. Summarizes chemical proteomics, up-to-date concepts, analysis, and target validation Covers fundamentals and strategies, including the profiling of enzyme activities and protein-drug interactions Explains technical advances in the field and describes on shotgun proteomics, quantitative proteomics, and corresponding methods of software and database usage for proteomics Includes a wide variety of applications in drug discovery, from kinase inhibitors and intracellular drug targets to the chemoproteomics analysis of natural products Addresses an important tool in small molecule drug discovery, appealing to both academia and the pharmaceutical industry Mass Spectrometry-Based Chemical Proteomics is an excellent source of information for readers in both academia and industry in a variety of fields, including pharmaceutical sciences, drug discovery, molecular biology, bioinformatics, and analytical sciences.