Download Free Recent Trends And Advances In Artificial Intelligence And Internet Of Things Book in PDF and EPUB Free Download. You can read online Recent Trends And Advances In Artificial Intelligence And Internet Of Things and write the review.

This book covers all the emerging trends in artificial intelligence (AI) and the Internet of Things (IoT). The Internet of Things is a term that has been introduced in recent years to define devices that are able to connect and transfer data to other devices via the Internet. While IoT and sensors have the ability to harness large volumes of data, AI can learn patterns in the data and quickly extract insights in order to automate tasks for a variety of business benefits. Machine learning, an AI technology, brings the ability to automatically identify patterns and detect anomalies in the data that smart sensors and devices generate, and it can have significant advantages over traditional business intelligence tools for analyzing IoT data, including being able to make operational predictions up to 20 times earlier and with greater accuracy than threshold-based monitoring systems. Further, other AI technologies, such as speech recognition and computer vision can help extract insights from data that used to require human review. The powerful combination of AI and IoT technology is helping to avoid unplanned downtime, increase operating efficiency, enable new products and services, and enhance risk management.
This book covers all the emerging trends in artificial intelligence (AI) and the Internet of Things (IoT). The Internet of Things is a term that has been introduced in recent years to define devices that are able to connect and transfer data to other devices via the Internet. While IoT and sensors have the ability to harness large volumes of data, AI can learn patterns in the data and quickly extract insights in order to automate tasks for a variety of business benefits. Machine learning, an AI technology, brings the ability to automatically identify patterns and detect anomalies in the data that smart sensors and devices generate, and it can have significant advantages over traditional business intelligence tools for analyzing IoT data, including being able to make operational predictions up to 20 times earlier and with greater accuracy than threshold-based monitoring systems. Further, other AI technologies, such as speech recognition and computer vision can help extract insights from data that used to require human review. The powerful combination of AI and IoT technology is helping to avoid unplanned downtime, increase operating efficiency, enable new products and services, and enhance risk management.
This book presents the proceedings of the 3rd International Conference of Reliable Information and Communication Technology 2018 (IRICT 2018), which was held in Kuala Lumpur, Malaysia, on July 23–24, 2018. The main theme of the conference was “Data Science, AI and IoT Trends for the Fourth Industrial Revolution.” A total of 158 papers were submitted to the conference, of which 103 were accepted and considered for publication in this book. Several hot research topics are covered, including Advances in Data Science and Big Data Analytics, Artificial Intelligence and Soft Computing, Business Intelligence, Internet of Things (IoT) Technologies and Applications, Intelligent Communication Systems, Advances in Computer Vision, Health Informatics, Reliable Cloud Computing Environments, Recent Trends in Knowledge Management, Security Issues in the Cyber World, and Advances in Information Systems Research, Theories and Methods.
Over the years, new IT approaches have manifested, including digital transformation, cloud computing, and the internet of things (IoT). They have had a profound impact on the population, including libraries. Many organizations can save on their IT budget by adopting these new approaches because they provide technology in easier ways, often at lower costs and to the benefit of users. Emerging Trends and Impacts of the Internet of Things in Libraries is a critical research publication that explores advancing technologies, specifically the internet of things, and their applications within library settings. Moreover, the book will provide insights and explore case studies on smart libraries. Featuring a wide range of topics such as smart technology, automation, and robotics, this book is ideal for librarians, professionals, academicians, computer scientists, researchers, and students working in the fields of library science, information and communication sciences, and information technology.
This book gathers selected research papers presented at the International Conference on Recent Trends in Machine Learning, IOT, Smart Cities & Applications (ICMISC 2020), held on 29–30 March 2020 at CMR Institute of Technology, Hyderabad, Telangana, India. Discussing current trends in machine learning, Internet of things, and smart cities applications, with a focus on multi-disciplinary research in the area of artificial intelligence and cyber-physical systems, this book is a valuable resource for scientists, research scholars and PG students wanting formulate their research ideas and find the future directions in these areas. Further, it serves as a reference work anyone wishing to understand the latest technologies used by practicing engineers around the globe.
INTELLIGENT CONNECTIVITY AI, IOT, AND 5G Explore the economics and technology of AI, IOT, and 5G integration Intelligent Connectivity: AI, IoT, and 5G delivers a comprehensive technological and economic analysis of intelligent connectivity and the integration of artificial intelligence, Internet of Things (IoT), and 5G. It covers a broad range of topics, including Machine-to-Machine (M2M) architectures, edge computing, cybersecurity, privacy, risk management, IoT architectures, and more. The book offers readers robust statistical data in the form of tables, schematic diagrams, and figures that provide a clear understanding of the topic, along with real-world examples of applications and services of intelligent connectivity in different sectors of the economy. Intelligent Connectivity describes key aspects of the digital transformation coming with the 4th industrial revolution that will touch on industries as disparate as transportation, education, healthcare, logistics, entertainment, security, and manufacturing. Readers will also get access to: A thorough introduction to technology adoption and emerging trends in technology, including business trends and disruptive new applications Comprehensive explorations of telecommunications transformation and intelligent connectivity, including learning algorithms, machine learning, and deep learning Practical discussions of the Internet of Things, including its potential for disruption and future trends for technological development In-depth examinations of 5G wireless technology, including discussions of the first five generations of wireless tech Ideal for telecom and information technology managers, directors, and engineers, Intelligent Connectivity: AI, IoT, and 5G is also an indispensable resource for senior undergraduate and graduate students in telecom and computer science programs.
The internet of things (IoT) has emerged to address the need for connectivity and seamless integration with other devices as well as big data platforms for analytics. However, there are challenges that IoT-based applications face including design and implementation issues; connectivity problems; data gathering, storing, and analyzing in cloud-based environments; and IoT security and privacy issues. Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics is a critical reference source that provides theoretical frameworks and research findings on IoT and big data integration. Highlighting topics that include wearable sensors, machine learning, machine intelligence, and mobile computing, this book serves professionals who want to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. It is therefore of most value to data scientists, computer scientists, data analysts, IT specialists, academicians, professionals, researchers, and students working in the field of information and knowledge management in various disciplines that include but are not limited to information and communication sciences, administrative sciences and management, education, sociology, computer science, etc. Moreover, the book provides insights and supports executives concerned with the management of expertise, knowledge, information, and organizational development in different types of work communities and environments.
Even though many data analytics tools have been developed in the past years, their usage in the field of cyber twin warrants new approaches that consider various aspects including unified data representation, zero-day attack detection, data sharing across threat detection systems, real-time analysis, sampling, dimensionality reduction, resource-constrained data processing, and time series analysis for anomaly detection. Further study is required to fully understand the opportunities, benefits, and difficulties of data analytics and the internet of things in today’s modern world. New Approaches to Data Analytics and Internet of Things Through Digital Twin considers how data analytics and the internet of things can be used successfully within the field of digital twin as well as the potential future directions of these technologies. Covering key topics such as edge networks, deep learning, intelligent data analytics, and knowledge discovery, this reference work is ideal for computer scientists, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.