Download Free Recent Developments In Statistical Mechanics And Quantum Field Theory Book in PDF and EPUB Free Download. You can read online Recent Developments In Statistical Mechanics And Quantum Field Theory and write the review.

The following topics were covered: the study of renormalization group flows between field theories using the methods of quantum integrability, S-matrix theory and the thermodynamic Bethe Ansatz; impurity problems approached both from the point of view of conformal field theory and quantum integrability. This includes the Kondo effect and quantum wires; solvable models with 1/r² interactions (Haldane-Shastri models). Yangian symmetries in 1/r² models and in conformal field theories; correlation functions in integrable 1+1 field theories; integrability in three dimensions; conformal invariance and the quantum hall effect; supersymmetry in statistical mechanics; and relations to two-dimensional Yang-Mills and QCD.
The 1976 Cargese Summer Institute was devoted to the study of certain exciting developments in quantum field theory and critical phenomena. Its genesis occurred in 1974 as an outgrowth of many scientific discussions amongst the undersigned, who decided to form a scientific committee for the organization of the school. On the one hand, various workers in quantum field theory were continuing to make startling progress in different directions. On the other hand, many new problems were arising from these various domains. Thus we feIt that 1976 might be an appropriate occasion both to review recent developments and to encourage interactions between researchers from different backgrounds working on a common set of unsolved problems. An important aspect of the school, as it took place, was the participation of and stimulating interaction between such a broad spectrum of theorists. The central topics of the school were chosen from the areas of solitons, phase transitions, critical behavior, the renormalization group, gauge fields and the analysis of nonrenormalizable field theories. A noteworthy feature of these topics is the interpene tration of ideas from quantum field theory and statistical mechanics whose inherent unity is seen in the functional integral formulation of quantum field theory. The actual lectures were partly in the form of tutorials designed to familiarize the participants with re cent progress on the main topics of the school. Others were in the form of more specialized seminars reporting on recent research.
This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields.
This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.
http://www.worldscientific.com/worldscibooks/10.1142/1095