Download Free Recent Developments In Pavement Engineering Book in PDF and EPUB Free Download. You can read online Recent Developments In Pavement Engineering and write the review.

This book brings together scientific experts in different areas that contribute to the design, analysis, and performance of sustainable pavements. This book also contributes to transportation engineering challenges and solutions, evaluate the state of the art, identify the shortcomings and opportunities for research, and promote the interaction with the industry. In particular, scientific topics that are addressed in this book include the use of different waste and recycled materials to improve pavement performance, pavement maintenance and rehabilitation, urban heat island due to transportation infrastructure and its mitigation techniques, machine learning applications in the prediction of pavement distresses, and analysis of pavement overlay.
This Special Issue "Recent Advances and Future Trends in Pavement Engineering" was proposed and organized to present recent developments in the field of innovative pavement materials and engineering. The 12 articles and state-of-the-art reviews highlighted in this editorial are related to different aspects of pavement engineering, from recycled asphalt pavements to alkali-activated materials, from hot mix asphalt concrete to porous asphalt concrete, from interface bonding to modal analysis, and from destructive testing to non-destructive pavement monitoring by using fiber optics sensors. This Special Issue partly provides an overview of current innovative pavement engineering ideas that have the potential to be implemented in industry in the future, covering some recent developments.
Pavement Engineering: Principles and Practice examines a wide range of topics in asphalt and concrete pavements from soil preparation and structural design to life cycle costing and economic analysis. This updated Fourth Edition covers all concepts and practices of pavement engineering in terms of materials, design, and construction methods for both flexible and rigid pavements and includes the latest developments in recycling, sustainable pavement materials, and resilient infrastructure. New and updated topics include material characterization concepts and tests, pavement management concepts, probabilistic examples of life cycle cost analysis, end-of-life considerations, waste plastic in asphalt, pervious concrete, pavement monitoring instrumentation and data acquisition, and more. The latest updated references, state of the art reviews, and online resources have also been included.
The urgent need for infrastructure rehabilitation and maintenance has led to a rise in the levels of research into bituminous materials. Breakthroughs in sustainable and environmentally friendly bituminous materials are certain to have a significant impact on national economies and energy sustainability. This book will provide a comprehensive review on recent advances in research and technological developments in bituminous materials. Opening with an introductory chapter on asphalt materials and a section on the perspective of bituminous binder specifications, Part One covers the physiochemical characterisation and analysis of asphalt materials. Part Two reviews the range of distress (damage) mechanisms in asphalt materials, with chapters covering cracking, deformation, fatigue cracking and healing of asphalt mixtures, as well as moisture damage and the multiscale oxidative aging modelling approach for asphalt concrete. The final section of this book investigates alternative asphalt materials. Chapters within this section review such aspects as alternative binders for asphalt pavements such as bio binders and RAP, paving with asphalt emulsions and aggregate grading optimization. - Provides an insight into advances and techniques for bituminous materials - Comprehensively reviews the physicochemical characteristics of bituminous materials - Investigate asphalt materials on the nano-scale, including how RAP/RAS materials can be recycled and how asphalt materials can self-heal and rejuvenator selection
Eco-efficient Pavement Construction Materials acquaints engineers with research findings on new eco-efficient pavement materials and how they can be incorporated into future pavements. Divided into three distinctive parts, the book emphasizes current research topics such as pavements with recycled waste, pavements for climate change mitigation, self-healing pavements, and pavements with energy harvesting potential. Part One considers techniques for recycling, Part Two reviews the contribution of pavements for climate change mitigation, including cool pavements, the development of new coatings for high albedo targets, and the design of pervious pavements. Finally, Part Three focuses on self-healing pavements, addressing novel materials and design and performance. Finally, the book discusses the case of pavements with energy harvesting potential, addressing different technologies on this field. - Offers a clear and concise lifecycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspects - Applies key research trends to green the pavement industry - Includes techniques for recycling waste materials, the design of cool pavements, self-healing mechanisms, and key steps in energy harvesting
Addressing the interactions between the different design and construction variables and techniques this book illustrates best practices for constructing economical, long life concrete pavements. The book proceeds in much the same way as a pavement construction project. First, different alternatives for concrete pavement solutions are outlined. The desired performance and behaviour parameters are identified. Next, appropriate materials are outlined and the most suitable concrete proportions determined. The design can be completed, and then the necessary construction steps for translating the design into a durable facility are carried out. Although the focus reflects highways as the most common application, special features of airport, industrial, and light duty pavements are also addressed. Use is made of modeling and performance tools such as HIPERPAV and LTPP to illustrate behavior and performance, along with some case studies. As concrete pavements are more complex than they seem, and the costs of mistakes or of over-design can be high, this is a valuable book for engineers in both the public and private sectors.
Traffic and Pavement Engineering presents the latest engineering concepts, techniques, practices, principles, standard procedures, and models that are applied and used to design and evaluate traffic systems, road pavement structures, and alternative transportation systems to ultimately achieve greater safety, sustainability, efficiency, and cost-effectiveness. It provides in-depth coverage of the major areas of transportation engineering and includes a broad range of practical problems and solutions, related to theory, concepts, practice, and applications. Solutions for each problem follow step-by-step procedures that include the theory and the derivation of the formulas and computations where applicable. Additionally, numerical methods, linear algebraic methods, and least squares regression techniques are presented to assist in problem solving. Features: Presents coverage of major areas in transportation engineering: traffic engineering, and pavement materials, analysis, and design. Provides solutions to numerous practical problems in traffic and pavement engineering including terminology, theory, practice, computation, and design. Offers downloadable and user-friendly MS Excel spreadsheets as well as numerical methods and optimization tools and techniques. Includes several practical case studies throughout. Utilizes a unique approach in presenting the different topics of transportation engineering. Traffic and Pavement Engineering will help academics and professionals alike to find practical solutions across the broad spectrum of traffic and pavement engineering issues.
Pavements are omnipresent in our society. From roads and airports to parking lots and driveways, every civil engineering project requires applications of this complex subject. Pavement Engineering covers the entire range of pavement construction, from soil preparation to structural design and life-cycle costing and analysis. It links the concepts of mix and structural design, while also placing emphasis on pavement evaluation and rehabilitation techniques. State-of-the-art content introduces the latest concepts and techniques, including ground-penetrating radar and seismic testing. The text facilitates a general course for upper-level undergraduates, covering the selection of materials, mix and structural design, and construction. It also provides laboratory and field tests accompanied by a discussion of new and advanced concepts. This unique text prepares the next-generation of engineers with the core principles and application knowledge needed to maneuver in the ever-expanding pavement engineering industry.