Download Free Recent Applications In Data Clustering Book in PDF and EPUB Free Download. You can read online Recent Applications In Data Clustering and write the review.

Clustering has emerged as one of the more fertile fields within data analytics, widely adopted by companies, research institutions, and educational entities as a tool to describe similar/different groups. The book Recent Applications in Data Clustering aims to provide an outlook of recent contributions to the vast clustering literature that offers useful insights within the context of modern applications for professionals, academics, and students. The book spans the domains of clustering in image analysis, lexical analysis of texts, replacement of missing values in data, temporal clustering in smart cities, comparison of artificial neural network variations, graph theoretical approaches, spectral clustering, multiview clustering, and model-based clustering in an R package. Applications of image, text, face recognition, speech (synthetic and simulated), and smart city datasets are presented.
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.
Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints. Algorithms The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints. Theory It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees. Applications The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints. With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.
Publisher description
With the development of Big Data platforms for managing massive amount of data and wide availability of tools for processing these data, the biggest limitation is the lack of trained experts who are qualified to process and interpret the results. This textbook is intended for graduate students and experts using methods of cluster analysis and applications in various fields. Suitable for an introductory course on cluster analysis or data mining, with an in-depth mathematical treatment that includes discussions on different measures, primitives (points, lines, etc.) and optimization-based clustering methods, Cluster Analysis and Applications also includes coverage of deep learning based clustering methods. With clear explanations of ideas and precise definitions of concepts, accompanied by numerous examples and exercises together with Mathematica programs and modules, Cluster Analysis and Applications may be used by students and researchers in various disciplines, working in data analysis or data science.
This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Recently many researchers are working on cluster analysis as a main tool for exploratory data analysis and data mining. A notable feature is that specialists in di?erent ?elds of sciences are considering the tool of data clustering to be useful. A major reason is that clustering algorithms and software are ?exible in thesensethatdi?erentmathematicalframeworksareemployedinthealgorithms and a user can select a suitable method according to his application. Moreover clusteringalgorithmshavedi?erentoutputsrangingfromtheolddendrogramsof agglomerativeclustering to more recent self-organizingmaps. Thus, a researcher or user can choose an appropriate output suited to his purpose,which is another ?exibility of the methods of clustering. An old and still most popular method is the K-means which use K cluster centers. A group of data is gathered around a cluster center and thus forms a cluster. The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies. A main reasonwhy we concentrate on fuzzy c-means is that most methodology and application studies infuzzy clusteringusefuzzy c-means,andfuzzy c-meansshouldbe consideredto beamajortechniqueofclusteringingeneral,regardlesswhetheroneisinterested in fuzzy methods or not. Moreover recent advances in clustering techniques are rapid and we requirea new textbook that includes recent algorithms.We should also note that several books have recently been published but the contents do not include some methods studied herein.