Download Free Recent Advances Towards Improved Phytoremediation Of Heavy Metal Pollution Book in PDF and EPUB Free Download. You can read online Recent Advances Towards Improved Phytoremediation Of Heavy Metal Pollution and write the review.

Heavy metal pollution represents a global challenge to both public health and environmental sustainability. Any means to reduce heavy metal pollution in the environment is of considerable economic significance. The use of green plants to clean up heavy metal pollution is an environmentally friendly as well as a low-cost approach to the problem. This plant-based biotechnology is commonly known as ‘phytoremediation’. Presently, there is limited application of this technology because useful plants with enhanced heavy metal resistance/tolerance are still needed to assist remediation of environments polluted with heavy metals. A key to improved phytoremediation of heavy metal pollution lies in research seeking for a better understanding of the mechanism(s) of heavy metal resistance/tolerance in plants. This E-book presents a unique treatment of the topics that have never been comprehensively brought together before in a single advanced reference. The volume explores aspects of plant biology that are critical for employing phytoremedation techniques to combat heavy metal contamination such as the specific plant biology, seed biology, plant tissue culture and enzymology. This E-book will be a useful reference to plant biologists, biotechnologists and environmental engineers seeking information about phytoremediation of heavy metals from the environment.
"Explores potential tools to enhance plant performance for remediation of pollutants" -- Back cover.
This second and expanded edition of the first book on agromining (phytomining) presents a comprehensive overview of the metal farming & recovery of the agromining production chain. Agromining is an emerging technology that aims to transform the extraction of sources of target elements not accessible by traditional mining and processing techniques. Agromining, which is based on sustainable development, uses hyperaccumulator plants as 'metal crops' farmed on sub-economic soils or minerals wastes to obtain valuable target elements. This volume is edited and authored by the pioneers in the rapidly expanding field of agromining and presents the latest insights and developments in the field. This book provides in-depth information on the global distribution and ecology of hyperaccumulator plants, their biogeochemical pathways, the influence of rhizosphere microbes, the physiology and molecular biology of hyperaccumulation, as well as aspects of propagation and conservation of these unusual plants. It describes the agronomy of metal crops and opportunities for incorporating agromining into rehabilitation and mine closure, including test cases for agromining of nickel, cobalt, manganese, arsenic, selenium, cadmium, zinc, thallium, rare earth elements and platinum group elements. Since the first edition was published, there have successful nickel agromining field trials in the tropics (in Malaysia and Guatemala), and these are presented in a dedicated case study chapter. Other new chapters focus on the processing of bio-ore for elements other than nickel, such as rare earth elements and cadmium, and on agromining from industrial wastes such as tailings, and industrial by-products and sites. Furthermore, the book features two new chapters that provide a comprehensive assessment of accumulation a very wide range elements from the Periodic Table in various plant species around the globe, and a chapter on practical methods for discovery of hyperaccumulator plant species in the field and in the herbarium. This book is of interest to environmental professionals in the minerals industry, government regulators, and academics.
Plant Metal Interaction: Emerging Remediation Techniques covers different heavy metals and their effect on soils and plants, along with the remediation techniques currently available. As cultivable land is declining day-by-day as a result of increased metals in our soil and water, there is an urgent need to remediate these effects. This multi-contributed book is divided into four sections covering the whole of plant metal interactions, including heavy metals, approaches to alleviate heavy metal stress, microbial approaches to remove heavy metals, and phytoremediation. - Provides an overview of the effect of different heavy metals on growth, biochemical reactions, and physiology of various plants - Serves as a reference guide for available techniques, challenges, and possible solutions in heavy metal remediation - Covers sustainable technologies in uptake and removal of heavy metals
Pollution and ways to combat it have become topics of great concern for researchers. One of the most important dimensions of this global crisis is wastewater, which can often become contaminated with heavy metals such as lead, mercury, and arsenic, which are released from different industrial wastes, mines, and agricultural runoff. Bioremediation of such heavy metals has been extensively studied using different groups of bacteria, fungi, and algae, and has been considered as a safer, eco-friendly, and cost-effective option for mitigation of contaminated wasteland. The toxicity of water impacts all of society, and so it is of great importance that we understand the better, cleaner, and more efficient ways of treating water. Recent Advancements in Bioremediation of Metal Contaminants is a pivotal reference source that explores bioremediation of pollutants from industrial wastes and examines the role of diverse forms of microbes in bioremediation of wastewater. Covering a broad range of topics including microorganism tolerance, phytoremediation, and fungi, the role of different extremophiles and biofilms in bioremediation are also discussed. This book is ideally designed for environmentalists, engineers, policymakers, academicians, researchers, and students in the fields of microbiology, toxicology, environmental chemistry, and soil and water science.
Phytoremediation: Biotechnological Strategies for Promoting Invigorating Environs focuses on phytoremediation's history, present and future potential, discussing mechanisms of remediation, different types of pollutant and polluted environs, cell signaling, biotechnology, and molecular biology, including site-directed DNA and the omics related to plant sciences. Sections focus on phytoremediation as an economically feasible and environmentally safe strategy, including its mechanisms from macroscopic to microscopic level, strategies of assisted phytoremediation, the role of omics on innovations on the field, the development of genetically modified plants (GMPs) to deal with pollutants, the future prospects of targeted genetic engineering in phytoremediation and remediation advantages and disadvantages. Other sections in the book explore the phytoremediation of specific environs (water and soil) and specific contaminants that are of major worldwide concern. - Presents phytoremediation mechanisms at a microscopic level (molecular mechanisms) - Covers remediation in different environs and in different kinds of pollutants - Conveys the economic aspects relating to phytoremediation
Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation brings together recent and established knowledge on different aspects of phytoremediation, providing this information in a single source that offers a cutting-edge synthesis of scientific and experiential knowledge on industrially contaminated site restoration that is useful for both practitioners and scientists. The book gives interested groups, both non-profit and for-profit, methods to manage dumpsites and other contaminated areas, including tactics on how to mitigate costs and even profit from ecological restoration. - Covers successful examples of turning industrially contaminated sites into ecologically healthy revenue producers - Explores examples of phytomanagement of dumpsites from around the globe - Provides the tools the reader needs to select specific plant species according to site specificity
The globally escalating population necessitates production of more goods and services to fulfil the expanding demands of human beings which resulted in urbanization and industrialization. Uncontrolled industrialization caused two major problems – energy crisis and accelerated environmental pollution throughout the world. Presently, there are technologies which have been proposed or shown to tackle both the problems. Researchers continue to seek more cost effective and environmentally beneficial pathways for problem solving. Plant kingdom comprises of species which have the potential to resolve the couple problem of pollution and energy. Plants are considered as a potential feedstock for development of renewable energy through biofuels. Another important aspect of plants is their capacity to sequester carbon dioxide and absorb, degrade, and stabilize environmental pollutants such as heavy metals, poly-aromatic hydrocarbons, poly-aromatic biphenyls, radioactive materials, and other chemicals. Thus, plants may be used to provide renewable energy generation and pollution mitigation. An approach that could amalgamate the two aspects can be achieved through phytoremediation (using plants to clean up polluted soil and water), and subsequent generation of energy from the phyto-remediator plants. This would be a major advance in achieving sustainability that focuses on optimizing ‘people’ (social issues), ‘planet’ (environmental issues), and ‘profit’ (financial issues). The “Phytoremediation-Cellulosic Biofuels” (PCB) process will be socially beneficial through reducing pollution impacts on people, ecologically beneficial through pollution abatement, and economically viable through providing revenue that supplies an energy source that is renewable and also provides less dependence on importing foreign energy (energy-independence). The utilization of green plants for pollution remediation and energy production will also tackle some other important global concerns like global climate change, ocean acidification, and land degradation through carbon sequestration, reduced emissions of other greenhouse gases, restoration of degraded lands and waters, and more. This book addresses the overall potential of major plants that have the potential to fulfil the dual purposes of phytoremediation and energy generation. The non-edible bioenergy plants that are explored for this dual objective include Jatropha curcas, Ricinus communis, Leucaena leucocephalla, Milletia pinnata, Canabis sativa, Azadirachta indica, and Acacia nilotica. The book addresses all possible aspects of phyto-remediaton and energy generation in a holistic way. The contributors are one of most authoritative experts in the field and have covered and compiled the best content most comprehensively. The book is going to be extremely useful for researchers in the area, research students, academicians and also for policy makers for an inclusive understanding and assessment of potential in plant kingdom to solve the dual problem of energy and pollution.
Phytoremediation is an exciting, new technology that utilizes metal-accumulating plants to rid soil of heavy metal and radionuclides. Hyperaccumulation plants are an appealing and economical alternative to current methods of soil recovery. Phytoremediation of Contaminated Soil and Water is the most thorough literary examination of the subject available today. The successful implementation of phytoremediation depends on identifying plant material that is well adapted to specific toxic sites. Gentle remediation is then applied in situ, or at the contamination site. No soil excavation or transport is necessary. This severely contains the potential risk of the pollutants entering the food chain. And it's cost effective. The progress of modern man has created many sites contaminated with heavy metals. The effected land is toxic to plants and animals , which creates considerable public interest in remediation. But the commonly used remedies are ex situ, which poses an expensive dilemma and an even greater threat. Phytoremediation offers the prospect of a cheaper and healthier way to deal with this problem. Read Phytoremediation of Contaminated Soil and Water to learn just how far this burgeoning technology has developed.
SOIL BIOREMEDIATION A practical guide to the environmentally sustainable bioremediation of soil Soil Bioremediation: An Approach Towards Sustainable Technology provides the first comprehensive discussion of sustainable and effective techniques for soil bioremediation involving microbes. Presenting established and updated research on emerging trends in bioremediation, this book provides contributions from both experimental and numerical researchers who provide reports on significant field trials. Soil Bioremediation instructs the reader on several different environmentally friendly bioremediation techniques, including: Bio-sorption Bio-augmentation Bio-stimulation Emphasizing molecular approaches and biosynthetic pathways of microbes, this one-of-a-kind reference focuses heavily on the role of microbes in the degradation and removal of xenobiotic substances from the environment and presents a unique management and conservation perspective in the field of environmental microbiology. Soil Bioremediation is perfect for undergraduate students in the fields of environmental science, microbiology, limnology, freshwater ecology and microbial biotechnology. It is also invaluable for researchers and scientists working in the areas of environmental science, environmental microbiology, and waste management.