Download Free Recent Advances In Reliability And Maintenance Modeling Book in PDF and EPUB Free Download. You can read online Recent Advances In Reliability And Maintenance Modeling and write the review.

Recent Advances in Reliability and Maintenance Modeling contains the papers presented at the 11th Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM 2024, Nagoya, Japan, 26-30 August 2024). The contributions discuss and explore solutions to the various reliability challenges facing society. Reliability and maintenance is the technology required in various fields such as (but not limited to): - Power systems - Communication networks - Transportation - Cloud computing - Electronic systems - Buildings and infrastructure - Medical and healthcare - Aviation and railway systems. Recent Advances in Reliability and Maintenance Modeling is of interest to academics and professionals interested or involved in the above mentioned areas.
This volume presents recent research in reliability and quality theory and its applications by many leading experts in the field. The subjects covered include reliability optimization, software reliability, maintenance, quality engineering, system reliability, Monte Carlo simulation, tolerance design optimization, manufacturing system estimation, neural networks, software quality assessment, optimization design of life tests, software quality, reliability-centered maintenance, multivariate control chart, methodology for measurement of test effectiveness, imperfect preventive maintenance, Markovian reliability modeling, accelerated life testing, and system availability assessment. The book will serve as a reference for postgraduate students and will also prove useful for practitioners and researchers in reliability and quality engineering. Sample Chapter(s). Chapter 1.1: Introduction (88 KB). Chapter 1.2: The Symmetrical Johnson Su Distributions (101 KB). Chapter 1.3: Application to Control Charts (79 KB). Chapter 1.4: An Example (84 KB). Chapter 1.5: How Kurtosis Affects Classical Charts (104 KB). Chapter 1.6: OC and ARL Curves (133 KB). Chapter 1.7: Conlusions (129 KB). Contents: Control Charts for Data Having a Symmetrical Distribution with a Positive Kurtosis (P Philippe); A Software Reliability Model with Testing Coverage and Imperfect Debugging (X Zhang & H Pham); Cost Allocation for Software Reliability (O Berman & M Cutler); General Reliability Test Plans for One-Shot Devices (W Zhang & W-K Shiue); Multivariate Control Chart (M-W Lu & R J Rudy); Optimal Preparedness Maintenance of Multi-Unit Systems with Imperfect Maintenance and Economic Dependence (H Wang et al.); Estimation of System Reliability by Variationally Processed Monte Carlo Simulation (M Chang et al.); A Bayesian Approach to the Optimal Policy under Imperfect Preventive Maintenance Models (K-S Park & C-H Jun); Design of Life Tests Based on Multi-Stage Decision Process (A Kanagawa & H Ohta); Reliability-Centered Maintenance for Light Rail Equipment (K H K Leung et al.); Incorporating Environmental Concepts with Tolerance Design Optimization Model (G Chen); Markovian Reliability Modeling for Software Safety/Availability Measurement (K Tokuno & S Yamada); Group Control Charts with Variable Stream and Sample Sizes (K T Lee et al.); A Methodology for the Measurement of Test Effectiveness (J C Munson & A P Nikora); Modeling Software Quality with Classification Trees (T M Khoshgoftaar & E B Allen); Highly Reliable Systems: Designing Software for Improved Assessment (B Cukic & F Bastani); Manufacturing Systems Estimation Using Neural Network Models (P L Cooper & G J Savage); A Deterministic Selective Maintenance Model for Complex Systems (C R Cassady et al.). Readership: Practitioners, postgraduate students and researchers in reliability and quality engineering.
Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. - Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry - Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance - Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability
Reliability theory is a major concern for engineers and managers engaged in making high quality products and designing highly reliable systems. “Advanced Reliability Models and Maintenance Policies” is a survey of new research topics in reliability theory and optimization techniques in reliability engineering. The book introduces partition and redundant problems within reliability models, and provides optimization techniques. The book also indicates how to perform maintenance in a finite time span and at failure detection, and to apply recovery techniques for computer systems. New themes such as reliability complexity and service reliability in reliability theory are theoretically proposed, and optimization problems in management science using reliability techniques are presented. The book is an essential guide for graduate students and researchers in reliability theory, and a valuable reference for reliability engineers engaged both in maintenance work and in management and computer systems.
This book presents the latest theories and methods of reliability and quality, with emphasis on reliability and quality in design and modelling. Each chapter is written by active researchers and professionals with international reputations, providing material which bridges the gap between theory and practice to trigger new practices and research challenges. The book therefore provides a state-of-the-art survey of reliability and quality in design and practices.
Many serious accidents have happened in the world where systems have been large-scale and complex, and have caused heavy damage and a social sense of instability. Furthermore, advanced nations have almost ?nished public inf- structureandrushedintoamaintenanceperiod.Maintenancewillbemore- portant than production, manufacture, and construction, that is, more ma- tenance for environmental considerations and for the protection of natural resources. From now on, the importance of maintenance will increase more and more. In the past four decades, valuable contributions to maintenance policies in reliability theory have been made. This book is intended to s- marize the research results studied mainly by the author in the past three decades. The book deals primarily with standard to advanced problems of main- nance policies for system reliability models. System reliability can be mainly improved by repair and preventive maintenance, and replacement, and rel- bility properties can be investigated by using stochastic process techniques. The optimum maintenance policies for systems that minimize or maximize appropriate objective functions under suitable conditions are discussed both analytically and practically. The book is composed of nine chapters. Chapter 1 is devoted to an int- duction to reliability theory, and brie?y reviews stochastic processes needed for reliability and maintenance theory. Chapter 2 summarizes the results of repair maintenance, which is the most basic maintenance in reliability. The repair maintenance of systems such as the one-unit system and multiple-unit redundant systems is treated. Chapters 3 through 5 summarize the results of three typical maintenance policies of age, periodic, and block replacements.
Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which classical renewal theory is surveyed and computa tional methods are described. Chapter 2 discusses "Stochastic Orders," and in it some definitions and concepts on stochastic orders are described and ag ing properties can be characterized by stochastic orders. Chapter 3 is devoted to "Classical Maintenance Models," under which the so-called age, block and other replacement models are surveyed. Chapter 4 discusses "Modeling Plant Maintenance," describing how maintenance practice can be carried out for plant maintenance.
1 Reliability: Past, Present, Future.- 2 Reliability Analysis as a Tool for Expressing and Communicating Uncertainty.- 3 Modeling a Process of Non-Ideal Repair.- 4 Some Models and Mathematical Results for Reliability of Systems of Components.- 5 Algorithms of Stochastic Activity and Problems of Reliability.- 6 Some Shifted Stochastic Orders.- 7 Characterization of Distributions in Reliability.- 8 Asymptotic Analysis of Reliability for Switching Systems in Light and Heavy Traffic Conditions.- 9 Nonlinearly Perturbed Markov Chains and Large Deviations for Lifetime Functionals.- 10 Evolutionary Systems in an Asymptotic Split Phase Space.- 11 An Asymptotic Approach to Multistate Systems Reliability Evaluation.- 12 Computer Intensive Methods Based on Resampling in Analysis of Reliability and Survival Data.- 13 Statistical Analysis of Damage Processes.- 14 Data Analysis Based on Warranty Database.- 15 Failure Models Indexed by Time and Usage.- 16 A New Multiple Proof Loads Approach For Estimating Correlations.- 17 Conditional and Partial Correlation For Graphical Uncertainty Models.- 18 Semiparametric Methods of Time Scale Selection.- 19 Censored and Truncated Lifetime Data.- 20 Tests for a Family of Survival Models Based on Extremes.- 21 Software Reliability Models - Past, Present and Future.- 22 Dynamic Analysis of Failures in Repairable Systems and Software.- 23 Precedence Test and Maximal Precedence Test.- 24 Hierarchical Bayesian Inference in Related Reliability Experiments.- 25 Tests for Equality of Intensities of Failures of a Repairable System Under Two Competing Risks.- 26 Semiparametric Estimation in Accelerated Life Testing.- 27 A Theoretical Framework for Accelerated Testing.- 28 Unbiased Estimation in Reliability and Similar Problems.- 29 Prediction Under Association.- 30 Uniform Limit Laws for Kernel Density Estimators on Possibly Unbounded Intervals.- 31 A Weak Convergence Result Relevant in Recurrent and Renewal Models.
Based on the authors’ research, Reliability and Optimal Maintenance presents the latest theories and methods of reliability and maintenance with an emphasis on multi-component systems, while also considering current hot topics in reliability and maintenance including: imperfect repair, economic dependence and opportunistic maintenance, and correlated failure and repair. Software reliability and maintenance cost, and warranty cost considerations are also considered.
This book considers a broad range of areas from decision making methods applied in the contexts of Risk, Reliability and Maintenance (RRM). Intended primarily as an update of the 2015 book Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis, this edited work provides an integration of applied probability and decision making. Within applied probability, it primarily includes decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In decision making, it includes multicriteria decision making/aiding (MCDM/A) methods and optimization models. Within MCDM, in addition to decision analysis, some of the topics related to mathematical programming areas are considered, such as multiobjective linear programming, multiobjective nonlinear programming, game theory and negotiations, and multiobjective optimization. Methods related to these topics have been applied to the context of RRM. In MCDA, several other methods are considered, such as outranking methods, rough sets and constructive approaches. The book addresses an innovative treatment of decision making in RRM, improving the integration of fundamental concepts from both areas of RRM and decision making. This is accomplished by presenting current research developments in decision making on RRM. Some pitfalls of decision models on practical applications on RRM are discussed and new approaches for overcoming those drawbacks are presented.