Download Free Recent Advances In Intuitionistic Fuzzy Logic Systems And Mathematics Book in PDF and EPUB Free Download. You can read online Recent Advances In Intuitionistic Fuzzy Logic Systems And Mathematics and write the review.

This book provides an overview of the state-of-the-art in both the theory and methods of intuitionistic fuzzy logic, partial differential equations and numerical methods in informatics. Covering topics such as fuzzy intuitionistic Hilbert spaces, intuitionistic fuzzy differential equations, fuzzy intuitionistic metric spaces, and numerical methods for differential equations, it discusses applications such as fuzzy real-time scheduling, intelligent control, diagnostics and time series prediction. The book features selected contributions presented at the 6th international congress of the Moroccan Applied Mathematics Society, which took place at Sultan Moulay Slimane University Beni Mellal, Morocco, from 7 to 9 November 2019.
This book aims at providing an overview of state-of-the-art in both the theory and methods of intuitionistic fuzzy logic, partial differential equations and numerical methods in informatics. It covers topics such as fuzzy intuitionistic Hilbert spaces, intuitionistic fuzzy differential equations, fuzzy intuitionistic metric spaces, and numerical methods for differential equations. It reports on applications such as fuzzy real time scheduling, intelligent control, diagnostics and time series prediction. Chapters were carefully selected among contributions presented at the second edition of the International Conference on Intuitionistic Fuzzy Sets and Mathematical Science, ICIFSMAS, held on April 11-13, 2018, at Al Akhawayn University of Ifrane, in Morocco.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
This book covers recent developments on fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations. In addition, the above-mentioned methods are applied to areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Nowadays, the main topic of the book is highly relevant, as most current intelligent systems and devices in use utilize some form of intelligent feature to enhance their performance. In addition, on the theoretical side, new and advanced models and algorithms of type-2 and type-3 fuzzy logic are presented, which are of great interest to researchers working on these areas. Also, new nature-inspired optimization algorithms and innovative neural models are put forward in the manuscript, which are very popular subjects, at this moment. There are contributions on theoretical aspects as well as applications, which make the book very appealing to a wide audience, ranging from researchers to professors and graduate students.
In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character.
The present book contains 20 articles collected from amongst the 53 total submitted manuscripts for the Special Issue “Fuzzy Sets, Fuzzy Loigic and Their Applications” of the MDPI journal Mathematics. The articles, which appear in the book in the series in which they were accepted, published in Volumes 7 (2019) and 8 (2020) of the journal, cover a wide range of topics connected to the theory and applications of fuzzy systems and their extensions and generalizations. This range includes, among others, management of the uncertainty in a fuzzy environment; fuzzy assessment methods of human-machine performance; fuzzy graphs; fuzzy topological and convergence spaces; bipolar fuzzy relations; type-2 fuzzy; and intuitionistic, interval-valued, complex, picture, and Pythagorean fuzzy sets, soft sets and algebras, etc. The applications presented are oriented to finance, fuzzy analytic hierarchy, green supply chain industries, smart health practice, and hotel selection. This wide range of topics makes the book interesting for all those working in the wider area of Fuzzy sets and systems and of fuzzy logic and for those who have the proper mathematical background who wish to become familiar with recent advances in fuzzy mathematics, which has entered to almost all sectors of human life and activity.
Our everyday lives are practically unthinkable without optimization. We constantly try to minimize our effort and to maximize the reward or progress achieved. Many real-world and industrial problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume presents a comprehensive collection of extended contributions from the 2017 Workshop on Computational Optimization. Presenting recent advances in computational optimization, it addresses important concrete applications, e.g. the modeling of physical processes, wildfire modeling, modeling processes in chemical engineering, workforce planning, wireless access network topology, parameter settings for controlling various processes, berth allocation, identification of homogeneous domains, and quantum computing. The book shows how to develop algorithms for them based on new intelligent methods like evolutionary computations, ant colony optimization, constrain programming and others.
This book contains select papers presented at the 3rd International Conference on Engineering Mathematics and Computing (ICEMC 2020), held at the Haldia Institute of Technology, Purba Midnapur, West Bengal, India, from 5–7 February 2020. The book discusses new developments and advances in the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, hybrid intelligent systems, etc. The book, containing 19 chapters, is useful to the researchers, scholars, and practising engineers as well as graduate students of engineering and applied sciences.
Structural vibration control is designed to suppress and control any unfavorable vibration due to dynamic forces that could alter the performance of the structure. Although many vibration control schemes have been investigated so far, additional questions involving their practical application remain to be studied. This book provides the reader with a comprehensive overview of the state of the art in vibration control and safety of structures, in the form of an easy-to-follow, article-based presentation that focuses on selected major developments in this critically important area.
This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.