Download Free Recent Advances In Fourier Analysis And Its Applications Book in PDF and EPUB Free Download. You can read online Recent Advances In Fourier Analysis And Its Applications and write the review.

This volume contains papers presented at the July, 1989 NATO Advanced Study Institute on Fourier Analysis and its Applications. The conference, held at the beautiful II Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy, created a dynamic in teraction between world-renowned scientists working in the usually disparate communities of pure and applied Fourier analysts. The papers to be found herein include important new results in x-ray crystallography by Nobel Laureate Herbert Hauptman, the application of the new concept of bispectrum to system identification by renowned probabilist Athanasios Papoulis, fascinating appli cations of number theory in Fourier analysis by eminent electrical engineer Manfred R. Schroeder, and exciting concepts regarding polynomials with restricted coefficients by foremost mathematical problem solver Donald J. Newman. The remaining papers further illustrate the inherent power and beauty of classical Fourier analysis, whether the results presented were sought as an end in themselves, or whether these classical methods were employed as a tool in illustrating and solving a particular applied problem. From antenna design to concert hall acoustics to image and speech processing to unimodular polynomi als, each conference participant benefited significantly from his or her exposure, in many cases for the first time, to those scientists on the other end of the spectrum from them selves. The purpose of this volume is to pass those benefits on to the reader.
A carefully prepared account of the basic ideas in Fourier analysis and its applications to the study of partial differential equations. The author succeeds to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesgue integral. Readers should be familiar with calculus, linear algebra, and complex numbers. At the same time, the author has managed to include discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability and multi-dimensional Fourier analysis, topics which one usually does not find in books at this level. A variety of worked examples and exercises will help the readers to apply their newly acquired knowledge.
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto’s achievements and expresses an appreciation for the mathematical and personal inspiration he has given to so many students, co-authors, and colleagues.
A mathematician on par with the greatest in the century, Norbert Wiener was a universal thinker of colossal proportions. This book contains the proceedings of the Norbert Wiener Centenary Congress held at Michigan State University on November 27-December 2, 1994. The aim of the Congress was to reveal the depth and strong coherence of thought that runs through Wiener's legacy, and to exhibit its continuation in on-going research. This volume brings together the great minds who have furthered Wiener's ideas in physics, stochastics, harmonic analysis, philosophy, prosthesis and cybernetics. The presentations coherently lay out the developments of the subjects from their inception. This volume provides an excellent pathway for new investigators who may wish to pursue these developments by following the footsteps of world experts. There is no other book available in which experts in the various fields in which Wiener worked have presented his thoughts and contributions insuch a coherent and lucid manner.
Comprised of papers from the IIIrd Prairie Analysis Seminar held at Kansas State University, this book reflects the many directions of current research in harmonic analysis and partial differential equations. Included is the work of the distinguished main speaker, Tadeusz Iwaniec, his invited guests John Lewis and Juan Manfredi, and many other leading researchers. The main topic is the so-called p-harmonic equation, which is a family of nonlinear partial differential equations generalizing the usual Laplace equation. This study of p-harmonic equations touches upon many areas of analysis with deep relations to functional analysis, potential theory, and calculus of variations. The material is suitable for graduate students and research mathematicians interested in harmonic analysis and partial differential equations.
This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.
Discover applications of Fourier analysis on finite non-Abeliangroups The majority of publications in spectral techniques considerFourier transform on Abelian groups. However, non-Abelian groupsprovide notable advantages in efficient implementations of spectralmethods. Fourier Analysis on Finite Groups with Applications in SignalProcessing and System Design examines aspects of Fourieranalysis on finite non-Abelian groups and discusses differentmethods used to determine compact representations for discretefunctions providing for their efficient realizations and relatedapplications. Switching functions are included as an example ofdiscrete functions in engineering practice. Additionally,consideration is given to the polynomial expressions and decisiondiagrams defined in terms of Fourier transform on finitenon-Abelian groups. A solid foundation of this complex topic is provided bybeginning with a review of signals and their mathematical modelsand Fourier analysis. Next, the book examines recent achievementsand discoveries in: Matrix interpretation of the fast Fourier transform Optimization of decision diagrams Functional expressions on quaternion groups Gibbs derivatives on finite groups Linear systems on finite non-Abelian groups Hilbert transform on finite groups Among the highlights is an in-depth coverage of applications ofabstract harmonic analysis on finite non-Abelian groups in compactrepresentations of discrete functions and related tasks in signalprocessing and system design, including logic design. All chaptersare self-contained, each with a list of references to facilitatethe development of specialized courses or self-study. With nearly 100 illustrative figures and fifty tables, this isan excellent textbook for graduate-level students and researchersin signal processing, logic design, and system theory-as well asthe more general topics of computer science and appliedmathematics.
This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.