Download Free Recent Advances In Elastomeric Nanocomposites Book in PDF and EPUB Free Download. You can read online Recent Advances In Elastomeric Nanocomposites and write the review.

‘Recent Advances in Elastomeric Nanocomposites’ reviews the recent progresses in the synthesis, processing as well as applications of elastomeric nanocomposites. Elastomers are a very important class of polymer materials and the generation of their nanocomposites by the incorporation of nano-filler has led to significant enhancement of their properties and, hence, expansion of their application potential. Most of the studies related with these materials are present in the form of research papers. Here, the authors present a comprehensive text covering the whole of the subject. The book is tailored more from the applications point of view, but also provide enough introductory material for research scholars new to this field.
Bionanocomposites: Green Synthesis and Applications provides an in-depth study on the synthesis of a variety of bionanocomposites from different types of raw materials. In addition, the book offers an overview on the synthesis and applications of environmentally friendly bionanocomposites, with an emphasis on bionanocomposites of natural products. Final sections focus on various characterization techniques, their production, and the future prospects of sustainable bionanocomposites. - Outlines the major characterization methods and processing techniques for bionanocomposites - Explores how bionanocomopsites are being used to design new projects in medicine and environmental engineering - Discusses how the properties of a variety of bionanocomposite classes make them suitable for particular industrial applications
This book, Functional Nanocomposites and Their Applications, explains innovative developments in nanocomposites. It covers novel findings and various applications of nanocomposites in different emerging fields. Chapters cover several types of nanocomposites as well as their synthesis, manufacturing, characteristics, and applications. Special emphasis is given to innovative works on functional nanocomposites and their relevant areas of use. The authors depict the stability and functionality of nanocomposites and their applications in various sectors, such as industrial, structural, biomedical, etc. Nanocomposites in wastewater treatment, MnO2 and graphene nanostructures, computer modeling of structure and mechanical behavior, polythiophene nanocomposites, and other topics are covered in the chapters. Nanocomposites have a high surface-to-volume ratio and hence have strong mechanical characteristics, making them suitable for application in the automotive and construction sectors. Nanocomposites show better property enhancement over conventional composites i.e., properties such as electrical, thermal, mechanical, and barrier. They have good transparency and also reduce the property of flammability. Other uses include power tool housing, electronic covers, and so forth. This book will help readers easily understand the effective implementation of different types of nanocomposites, such as for environmental remediation, biomedical applications, lightweight designed goods with better mechanical, thermal, or chemical resistance qualities, etc. This book will be valuable for scientists and engineers both in academics and industry.
Progress in Rubber Nanocomposites provides an up-to-date review on the latest advances and developments in the field of rubber nanocomposites. It is intended to serve as a one-stop reference resource to showcase important research accomplishments in the area of rubber nanocomposites, with particular emphasis on the use of nanofillers. Chapters discuss major progress in the field and provide scope for further developments that will have an impact in the industrial research area. Global leaders and researchers from industry, academia, government, and private research institutions contribute valuable information. - A one-stop reference relating to the processing and characterization of rubber nanocomposites - Presents the morphological, thermal, and mechanical properties that are discussed in detail - Contains key highlights in the form of dedicated chapters on interphase characterization, applications, and computer simulation
This is the second volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. “Advances in Elastomers” discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This second volume is deals with composites and nanocomposites of elastomers.
The book highlights applications of hybrid materials in solar energy systems, lithium ion batteries, electromagnetic shielding, sensing of pollutants and water purification. A hybrid material is defined as a material composed of an intimate mixture of inorganic components, organic components, or both types of components. In the last few years, a tremendous amount of attention has been given towards the development of materials for efficient energy harvesting; nanostructured hybrid materials have also been gaining significant advances to provide pollutant free drinking water, sensing of environmental pollutants, energy storage and conservation. Separately, intensive work on high performing polymer nanocomposites for applications in the automotive, aerospace and construction industries has been carried out, but the aggregation of many fillers, such as clay, LDH, CNT, graphene, represented a major barrier in their development. Only very recently has this problem been overcome by fabrication and applications of 3D hybrid nanomaterials as nanofillers in a variety of polymers. This book, Hybrid Nanomaterials, examines all the recent developments in the research and specially covers the following subjects: 3D hybrid nanomaterials nanofillers Hybrid nanostructured materials for development of advanced lithium batteries High performing hybrid nanomaterials for supercapacitor applications Nano-hybrid materials in the development of solar energy applications Application of hybrid nanomaterials in water purification Advanced nanostructured materials in electromagnetic shielding of radiations Preparation, properties and application of hybrid nanomaterials in sensing of environmental pollutants Development of hybrid fillers/polymer nanocomposites for electronic applications High performance hybrid filler reinforced epoxy nanocomposites State-of-the-art overview of elastomer/hybrid filler nanocomposites
The book summarizes in a comprehensive manner many of the recent technical research accomplishments in the area of natural polymers. It discusses the various attempts reporting on solving this problem from the point of view of the chemistry and the structure of natural polymers, highlighting the drawbacks and advantages of each method and proposal. Based on considerations of structure - property relations, it is possible to obtain fibers with improved strength by making use of their nanostructures and/or mesophase properties of natural polymers. The book is a unique book with contributions from the experts of the biomaterial area research. it covers all topics related to natural biomaterials such as natural rubber, cellulose, chitin, starch, hemicellulose, lignin, alginates, soy protein, casein and their bionanocomposites and applications. This book is a useful reference for scientists, academicians, research scholars and biotechnologists.
Elastomeric Nanocellulose Composites provides an in-depth study of recent developments in this fast-evolving research field. This book covers diverse aspects of materials engineering, surface treatments, and fabrication of green nanocomposites. It consolidates recent studies and qualitative findings on the incorporation of a myriad of nanocellulose variants into various types of elastomer matrices with the main goal of enhancing its mechanical integrity and potentially phasing out conventional elastomer fillers. The current market is likewise discussed in detail. This book will provide an in-depth study of current developments of nanocellulose incorporated elastomer composites and their applications.The book will be an essential reference resource for material scientists, academic and industrial researchers, and technologists covering all aspects in the field. Carbon black and silica are currently used as fillers in elastomer-based composites, but the use of these reinforcing agents is not sustainable or eco-friendly. Therefore there is a need to look for more sustainable filler materials for elastomers. - Assists readers in solving fundamental and application-related problems in the development of nanocellulose filled elastomers - Discusses characterization techniques used for analyzing elastomer nanocomposites - Provides various attributes of nanocellulose, its composites with different types of elastomeric materials (both natural and synthetic) and its potential for advanced applications - Includes comprehensive, well structured content to maintain consistency and flow to help readers easily navigate chapters
Fundamentals and Recent Advances in Nanocomposites Based on Polymers and Nanocellulose brings together the latest research in cellulose-based nanocomposites, covering fundamentals, processing, properties, performance, applications, and the state of the art. The book begins by explaining the fundamentals of cellulose and cellulose-based nanocomposites, including sources, extraction, types, classification, linkages, model structure, model compounds, and characterization techniques. The second part of the book covers the incorporation of cellulose fillers to improve the properties or characteristics of nanocomposites, organized by composite category, including in aerogels, thermoplastic composites, thermoset composites, bioplastic composites, carbon nanofibers, rubber composites, carbon fibers, and foaming materials. Throughout these chapters, there is an emphasis on the latest innovations and application potential. Finally, applications are explored in more detail, notably focusing on the utilization of nanocellulose in biodegradable composites for biomedical applications, along with other important industrial application areas. This book is of great interest to researchers, scientists, and advanced students working with bio-based materials, and across polymer science, nanomaterials, composite materials, plastics engineering, chemical engineering, materials science and engineering, as well as R&D professionals, engineers, and industrialists interested in the development of bio-based materials for advanced applications or material commercialization. - Presents the fundamentals of cellulose-based nanocomposites, including sources, extraction, types, classification, linkages, structure, compounds, and characterization. - Discusses and analyzes the most suitable fabrication methods and processing techniques for cellulose as a reinforcement in a range of composites. - Opens the door to a range of cutting-edge applications and considers key aspects such as cost, lifecycle, and biodegradability.
Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. - Provides detailed information on the extraction of useful compounds from algal biomass - Highlights the development of a range of polymers, blends, and composites - Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development - Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials