Download Free Rearrangements And Convexity Of Level Sets In Pde Book in PDF and EPUB Free Download. You can read online Rearrangements And Convexity Of Level Sets In Pde and write the review.

The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications.The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites.
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.
The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applications.The book gives an modern and up-to-date treatment of the subject and includes several new results proved recently. Effort has been made to keep the exposition as simple and self-contained as possible. A knowledge of the existence theory of weak solutions of elliptic partial differential equations in Sobolev spaces is, however, assumed. Apart from this and a general mathematical maturity at the graduate level, there are no other prerequisites.
This volume is an outcome of the EQUADIFF 87 conference in Greece. It addresses a wide spectrum of topics in the theory and applications of differential equations, ordinary, partial, and functional. The book is intended for mathematics and scientists.
This research presents some important domains of partial differential equations and applied mathematics including calculus of variations, control theory, modelling, numerical analysis and various applications in physics, mechanics and engineering. These topics are now part of many areas of science and have experienced tremendous development during the last decades.
The volume comprises eleven survey papers based on survey lectures delivered at the Conference in Prague in July 1987, which covered various facets of potential theory, including its applications in other areas. The survey papers deal with both classical and abstract potential theory and its relations to partial differential equations, stochastic processes and other branches such as numerical analysis and topology. A collection of problems from potential theory, compiled on the occasion of the conference, is included, with additional commentaries, in the second part of this volume.
This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for elliptic problems in unbounded domains as well as finite dimensional reduction of their dynamics requires new ideas and tools. To this end, both a trajectory dynamical systems approach and new Liouville type results for the solutions of some class of elliptic equations are used. The work also uses symmetry and monotonicity results for nonnegative solutions in order to characterize an asymptotic profile of solutions and compares a pure elliptic partial differential equations approach and a dynamical systems approach. The new results obtained will be particularly useful for mathematical biologists.
Approximately fifty articles that were published in The Mathematical Intelligencer during its first eighteen years. The selection demonstrates the wide variety of attractive articles that have appeared over the years, ranging from general interest articles of a historical nature to lucid expositions of important current discoveries. Each article is introduced by the editors. "...The Mathematical Intelligencer publishes stylish, well-illustrated articles, rich in ideas and usually short on proofs. ...Many, but not all articles fall within the reach of the advanced undergraduate mathematics major. ... This book makes a nice addition to any undergraduate mathematics collection that does not already sport back issues of The Mathematical Intelligencer." D.V. Feldman, University of New Hamphire, CHOICE Reviews, June 2001.
Optimal Shape Design is concerned with the optimization of some performance criterion dependent (besides the constraints of the problem) on the "shape" of some region. The main topics covered are: the optimal design of a geometrical object, for instance a wing, moving in a fluid; the optimal shape of a region (a harbor), given suitable constraints on the size of the entrance to the harbor, subject to incoming waves; the optimal design of some electrical device subject to constraints on the performance. The aim is to show that Optimal Shape Design, besides its interesting industrial applications, possesses nontrivial mathematical aspects. The main theoretical tools developed here are the homogenization method and domain variations in PDE. The style is mathematically rigorous, but specifically oriented towards applications, and it is intended for both pure and applied mathematicians. The reader is required to know classical PDE theory and basic functional analysis.