Download Free Real World Data And Real World Evidence In Lung Cancer Book in PDF and EPUB Free Download. You can read online Real World Data And Real World Evidence In Lung Cancer and write the review.

Randomized controlled trials (RCTs) have traditionally served as the gold standard for generating evidence about medical interventions. However, RCTs have inherent limitations and may not reflect the use of medical products in the real world. Additionally, RCTs are expensive, time consuming, and cannot answer all questions about a product or intervention. Evidence generated from real-world use, such as real-world evidence (RWE) may provide valuable information, alongside RCTs, to inform medical product decision making. To explore the potential for using RWE in medical product decision making, the National Academies of Sciences, Engineering, and Medicine planned a three-part workshop series. The series was designed to examine the current system of evidence generation and its limitations, to identify when and why RWE may be an appropriate type of evidence on which to base decisions, to learn from successful initiatives that have incorporated RWE, and to describe barriers that prevent RWE from being used to its full potential. This publication summarizes the discussions from the entire workshop series.
Post-Authorization Safety Studies of Medicinal Products: The PASS Book bridges the gap in the literature by providing a complete look at post-authorization safety studies and important pharmacoepidemiology and pharmacovigilance aspects. It covers various types and limitations of active surveillance programs, including the use of large databases and disparate data sources for rapid signal detection, as well as novel and advanced design and analysis approaches for causal interference from observational data. This book serves as an important reference for pharmacovigilance scientists and pharmacoepidemiologists who are searching for the appropriate study design to answer safety research questions. Readers will be able to effectively and efficiently design and interpret findings from post-authorization safety studies with the goal of improving the benefit-risk balance of a drug in order to optimize patient safety. - Discusses all types of observational studies in post-marketing drug safety assessment, from spontaneous reporting systems, to pragmatic trials, with examples from real-world settings - Presents various types of post-authorization safety studies - Offers solutions to the common challenges in the design and conduct of these studies - Highlights active surveillance programs, including common data models for rapid signal detection of drug safety issues
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings.
The volume and complexity of information about individual patients is greatly increasing with use of electronic records and personal devices. Potential effects on medical product development in the context of this wealth of real-world data could be numerous and varied, ranging from the ability to determine both large-scale and patient-specific effects of treatments to the ability to assess how therapeutics affect patients' lives through measurement of lifestyle changes. In October 2016, the National Academies of Sciences, Engineering, and Medicine held a workshop to facilitate dialogue among stakeholders about the opportunities and challenges for incorporating real-world evidence into all stages in the process for the generation and evaluation of therapeutics. Participants explored unmet stakeholder needs and opportunities to generate new kinds of evidence that meet those needs. This publication summarizes the presentations and discussions from the workshop.
Perfect for radiation oncology physicians and residents needing a multidisciplinary, treatment-focused resource, this updated edition continues to provide the latest knowledge in this consistently growing field. Not only will you broaden your understanding of the basic biology of disease processes, you'll also access updated treatment algorithms, information on techniques, and state-of-the-art modalities. The consistent and concise format provides just the right amount of information, making Clinical Radiation Oncology a welcome resource for use by the entire radiation oncology team. Content is templated and divided into three sections -- Scientific Foundations of Radiation Oncology, Techniques and Modalities, and Disease Sites - for quick access to information. Disease Sites chapters summarize the most important issues on the opening page and include a full-color format, liberal use of tables and figures, a closing section with a discussion of controversies and problems, and a treatment algorithm that reflects the treatment approach of the authors. Chapters have been edited for scientific accuracy, organization, format, and adequacy of outcome data (such as disease control, survival, and treatment tolerance). Allows you to examine the therapeutic management of specific disease sites based on single-modality and combined-modality approaches. Features an emphasis on providing workup and treatment algorithms for each major disease process, as well as the coverage of molecular biology and its relevance to individual diseases. Two new chapters provide an increased emphasis on stereotactic radiosurgery (SRS) and stereotactic body irradiation (SBRT). New Associate Editor, Dr. Andrea Ng, offers her unique perspectives to the Lymphoma and Hematologic Malignancies section. Key Points are summarized at the beginning of each disease-site chapter, mirroring the template headings and highlighting essential information and outcomes. Treatment algorithms and techniques, together with discussions of controversies and problems, reflect the treatment approaches employed by the authors. Disease Site Overviews allow each section editor to give a unique perspective on important issues, while online updates to Disease Site chapters ensure your knowledge is current. Disease Site chapters feature updated information on disease management and outcomes. Four videos accessible on Expert Consult include Intraoperative Irradiation, Prostate Brachytherapy, Penile Brachytherapy, and Ocular Melanoma. Thirty all-new anatomy drawings increase your visual understanding. Expert Consult eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, and references from the book on a variety of devices.
Lung cancer is still one of the most common malignancies with a high global mortality rate with over 2 million cases confirmed by the World Health Organization in 2018. Although there has been progress in diagnosing and treating lung cancer, patients still have poor prognosis with a 5-year survival rate typically from 4-17% which is dependent on the stage of the cancer and regional differences. The majority of lung cancer patients are at the advanced stages of the disease at the time of their diagnosis and therefore, have less chances of early treatment that could have improved their survival rate. Therefore, early detection of lung cancer remains imperative to improve the prognosis.
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
The case-control approach is a powerful method for investigating factors that may explain a particular event. It is extensively used in epidemiology to study disease incidence, one of the best-known examples being Bradford Hill and Doll's investigation of the possible connection between cigarette smoking and lung cancer. More recently, case-control studies have been increasingly used in other fields, including sociology and econometrics. With a particular focus on statistical analysis, this book is ideal for applied and theoretical statisticians wanting an up-to-date introduction to the field. It covers the fundamentals of case-control study design and analysis as well as more recent developments, including two-stage studies, case-only studies and methods for case-control sampling in time. The latter have important applications in large prospective cohorts which require case-control sampling designs to make efficient use of resources. More theoretical background is provided in an appendix for those new to the field.
The demand for health information continues to increase, but the ability of health professionals to provide it clearly remains variable. The aim of this book is (1) to summarize and synthesize research on the selection and presentation of data pertinent to public health, and (2) to provide practical suggestions, based on this research summary and synthesis, on how scientists and other public health practitioners can better communicate data to the public, policy makers, and the press in typical real-world situations. Because communication is complex and no one approach works for all audiences, the authors emphasize how to communicate data "better" (and in some instances, contrast this with how to communicate data "worse"), rather than attempting a cookbook approach. The book contains a wealth of case studies and other examples to illustrate major points, and actual situations whenever possible. Key principles and recommendations are summarized at the end of each chapter. This book will stimulate interest among public health practitioners, scholars, and students to more seriously consider ways they can understand and improve communication about data and other types of scientific information with the public, policy makers, and the press. Improved data communication will increase the chances that evidence-based scientific findings can play a greater role in improving the public's health.