Download Free Reactive Processing Of Polymers Book in PDF and EPUB Free Download. You can read online Reactive Processing Of Polymers and write the review.

Loaded with practical knowledge, Reactive Polymers Fundamentals and Applications: A Concise Guide to Industrial Polymers comprehensively presents the state-of-art of methods and materials for the formulation of polymeric resins. It is an indispensable tool for chemists, engineers, and manufacturers who use, formulate, and cure raw materials into final products. The text focuses on the chemical modification of properties during the final stage of part fabrication from plastics. Newer applications range from the small scale, such as dental fillings, to industrial processes for batch fabrication. The book covers resin groups in major use in industry and under active research and development.
Developments in machinery, materials and applications are outlined in the cond104 of commercial considerations and advances in fundamental understanding. The principles and benefits of polymer modification and blending via reactive extrusion are explained. A b257 of novel techniques which have developed out of the major reactive processes are also described. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database provides useful references for further reading.
Chemical modification of polymers by reactive modifiers is no longer an academic curiosity but a commercial reality that has delivered a diverse range of speciality materials for niche markets: reactively grafted styrenic alloys, maleated polyolefins, super-tough nylons, silane modified and moisture-cured polyolefins, and thermoplastic elastomers, are but few exam ples of commercial successes. Although the approach of reactive modification of polymers has been largely achieved either in solution or in the solid state (through in situ reactions in polymer melts), it is the latter route that has attracted most attention in the last two decades owing to its flexibility and cost-effective ness. This route, referred to as reactive processing, focuses on the use of suitable reactive modifier(s) and the adoption of conventional polymer processing machinery, an extruder or a mixer, as a chemical reactor, to perform in situ targeted reactions for chemical modification of preformed polymers. This relatively simple, though scientifically highly challenging, approach to reactive modification offers unique opportunities in exploiting various reactive modifiers for the purpose of altering and transforming in a controlled manner the properties of preformed commercial polymers into new/speciality materials with tailor-made properties and custom-designed performance for target applications. Such an economically attractive route constitutes a radical diversion away from the traditional practices of manufacturing new polymers from monomers which involves massive in vestments in sophisticated technologies and chemical plants.
This first comprehensive overview of reactive extrusion technology for over a decade combines the views of contributors from both academia and industry who share their experiences and highlight possible applications and markets. They also provide updated information on the underlying chemical and physical concepts, summarizing recent developments in terms of the material and machinery used. As a result, readers will find here a compilation of potential applications for reactive extrusion to access new and cost-effective polymeric materials, while using existing compounding machines.
Based on a highly successful PPI advanced technical course given by the author, this book combines the applied and fundamental aspects of reactive extrusion.
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume One provides the principles and foundations for the design, development, manufacture and processing of reactive and functional polymers based primarily on biopolymers, polyesters and polyurenthanes. The text provides an in-depth review of updated sources on reactive resins and silicones. In this book, world-renowned researchers have participated, including Dr. Runcang Sun (Associate editor for the journal ‘Carbohydrate Polymers’). With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
Discusses various technological methods of reactive processing of polymers with a special emphasis on production of large size articles. Also shows methods of scaling up from laboratory to production stage by a combination of process modeling and application of modern analytical techniques to evaluate similarity of production on different scales. This approach not only gives objective results required for precise evaluation of process kinetics, but it is applied in the book to real systems used as examples of model application. The book begins with a discussion of the chemistry of reactive processes that are then discussed from the point of view of their modeling. In the next section, analytical control methods are evaluated for their usefulness in process monitoring. The final chapter discusses details of various technological methods of reactive processing by means of 70 diagrams. It also describes how to control and introduce new processes without long trials, and design technology that is cost-efficient and environmentally friendly.
Experts in rheology and polymer processing present up-to-date, fundamental and applied information on the rheological properties of polymers, in particular those relevant to processing, contributing to the physical understanding and the mathematical modelling of polymer processing sequences. Basic concepts of non-Newtonian fluid mechanics, micro-rheological modelling and constitutive modelling are reviewed, and rheological measurements are described. Topics with practical relevance are debated, such as linear viscoelasticity, converging and diverging flows, and the rheology of multiphase systems. Approximation methods are discussed for the computer modelling of polymer melt flow. Subsequently, polymer processing technologies are studied from both simulation and engineering perspectives. Mixing, crystallization and reactive processing aspects are also included. Audience: An integrated and complete view of polymer processing and rheology, important to institutions and individuals engaged in the characterisation, testing, compounding, modification and processing of polymeric materials. Can also support academic polymer processing engineering programs.
Fundamental concepts coupled with practical, step-by-step guidance With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion dies, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include: Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devices New chapter dedicated to the recycling of thermoplastics and the processing of renewable polymers Life-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimal Rheology of polymers containing fibers Chapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.
Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.