Download Free Rational Numbers Book in PDF and EPUB Free Download. You can read online Rational Numbers and write the review.

What is the relationship between fractions and rational numbers? Can you explain why the product of two fractions between 0 and 1 is less than either factor? How are rational numbers related to irrational numbers, which your students will study in later grades? How much do you know… and how much do you need to know? Helping your upper elementary school students develop a robust understanding of rational numbers requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about rational numbers. It is organised around four big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to rational numbers, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.
Until recently there had been relatively little integration of programs of research on teaching, learning, curriculum, and assessment. However, in the last few years it has become increasingly apparent that a more unified program of research is needed to acquire an understanding of teaching and learning in schools that will inform curriculum development and assessment. The chapters in this volume represent a first step toward an integration of research paradigms in one clearly specified mathematical domain. Integrating a number of different research perspectives is a complex task, and ways must be found to reduce the complexity without sacrificing the integration. The research discussed in this volume is tied together because it deals with a common content strand. During the last ten years specific content domains have served as focal points for research on the development of mathematical concepts in children. The areas of addition and subtraction, algebra, rational numbers, and geometry are notable examples. Whether a similar organizational structure will prevail for programs of research that integrate the study of teaching, learning, curriculum, and assessment is an open question. The perspectives presented in this volume illustrate the potential for adopting this perspective.
This is the first of three volumes that, together, give an exposition of the mathematics of grades 9–12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K–12 as a totally transparent subject. The present volume begins with fractions, then rational numbers, then introductory geometry that can make sense of the slope of a line, then an explanation of the correct use of symbols that makes sense of “variables”, and finally a systematic treatment of linear equations that explains why the graph of a linear equation in two variables is a straight line and why the usual solution method for simultaneous linear equations “by substitutions” is correct. This book should be useful for current and future teachers of K–12 mathematics, as well as for some high school students and for education professionals.
The images in this book are in color. For a less-expensive grayscale paperback version, see ISBN 9781680923254. Prealgebra 2e is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Students who are taking basic mathematics and prealgebra classes in college present a unique set of challenges. Many students in these classes have been unsuccessful in their prior math classes. They may think they know some math, but their core knowledge is full of holes. Furthermore, these students need to learn much more than the course content. They need to learn study skills, time management, and how to deal with math anxiety. Some students lack basic reading and arithmetic skills. The organization of Prealgebra makes it easy to adapt the book to suit a variety of course syllabi.
"Prealgebra is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Prealgebra follows a nontraditional approach in its presentation of content. The beginning, in particular, is presented as a sequence of small steps so that students gain confidence in their ability to succeed in the course. The order of topics was carefully planned to emphasize the logical progression throughout the course and to facilitate a thorough understanding of each concept. As new ideas are presented, they are explicitly related to previous topics."--BC Campus website.
In this book William A. Dembski brilliantly argues that intelligent design provides a crucial link between science and theology. This is a pivotal work from a thinker whom Phillip Johnson calls "one of the most important of the `design' theorists."