Download Free Rare Metals Book in PDF and EPUB Free Download. You can read online Rare Metals and write the review.

The resources race is on. Powering our digital lives and green technologies are some of the Earth’s most precious metals — but they are running out. And what will happen when they do? The green-tech revolution has been lauded as the silver bullet to a new world. One that is at last free of oil, pollution, shortages, and cross-border tensions. Drawing on six years of research across a dozen countries, this book cuts across conventional green thinking to probe the hidden, dark side of green technology. By breaking free of fossil fuels, we are in fact setting ourselves up for a new dependence — on rare metals such as cobalt, gold, and palladium. They are essential to electric vehicles, wind turbines, solar panels, our smartphones, computers, tablets, and other everyday connected objects. China has captured the lion’s share of the rare metals industry, but consumers know very little about how they are mined and traded, or their environmental, economic, and geopolitical costs. The Rare Metals War is a vital exposé of the ticking time-bomb that lies beneath our new technological order. It uncovers the reality of our lavish and ambitious environmental quest that involves risks as formidable as those it seeks to resolve.
"Rare Earth Frontiers is a timely text. As Klinger notes, rare earths are neither rare nor technically earths, but they are still widely believed to be both. Although her approach focuses on the human, or cultural, geography of rare earths mining, she does not ignore the geological occurrence of these mineral types, both on Earth and on the moon.... This volume is excellently organized, insightfully written, and extensively sourced."―Choice Drawing on ethnographic, archival, and interview data gathered in local languages and offering possible solutions to the problems it documents, this book examines the production of the rare earth frontier as a place, a concept, and a zone of contestation, sacrifice, and transformation. Rare Earth Frontiers is a work of human geography that serves to demystify the powerful elements that make possible the miniaturization of electronics, green energy and medical technologies, and essential telecommunications and defense systems. Julie Michelle Klinger draws attention to the fact that the rare earths we rely on most are as common as copper or lead, and this means the implications of their extraction are global. Klinger excavates the rich historical origins and ongoing ramifications of the quest to mine rare earths in ever more impossible places. Klinger writes about the devastating damage to lives and the environment caused by the exploitation of rare earths. She demonstrates in human terms how scarcity myths have been conscripted into diverse geopolitical campaigns that use rare earth mining as a pretext to capture spaces that have historically fallen beyond the grasp of centralized power. These include legally and logistically forbidding locations in the Amazon, Greenland, and Afghanistan, and on the Moon.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. It covers metals essential for critical modern technologies including electronics, electric motors, generators, energy storage systems, and specialty alloys. ​Rare metals are the main building blocks of many emerging critical technologies and have been receiving significant attention in recent years. Much research in academia and industry is devoted to finding novel techniques to extract critical and rare metals from primary and secondary sources. The technologies that rely on critical metals are dominating the world, and finding a way to extract and supply them effectively is highly desirable and beneficial. Rapid development of these technologies entails fast advancement of the resource and processing industry for their building materials. Authors from academia and industry exchange knowledge on developing, operating, and advancing extractive and processing technologies. Contributions cover rare-earth elements (magnets, catalysts, phosphors, and others), energy storage materials (lithium, cobalt, vanadium, graphite), alloy elements (scandium, niobium, titanium), and materials for electronics (gallium, germanium, indium, gold, silver). The contributions also cover various processing techniques in mineral beneficiation, hydrometallurgy, separation and purification, pyrometallurgy, electrometallurgy, supercritical fluid extraction, and recycling (batteries, magnets, electrical and electronic equipment).
Corrosion inhibitors are an important method for minimizing corrosion; however traditional inhibitors such as chromates pose environmental problems. Rare earth metals provide an important, environmentally-friendly alternative. This book provides a comprehensive review of current research and examines how rare earth metals can be used to prevent corrosion and applied to protect metals in such industries as aerospace and construction. Chapter 1 begins by examining the important need to replace chromate, and then goes on to discuss the chemistry of the rare earth metals and their related compounds. Chapter 2 considers the techniques that can be used to identify corrosion inhibition mechanisms and to test the levels of protection offered to different metals by rare earth compounds. Subsequent chapters consider in more detail how rare earth elements can be used as corrosion inhibitors in different forms and for different metals. This includes discussion on the potential of rare earth elements for self-healing, tunable and multifunctional coatings. Finally, chapter 10 considers the cost and availability of the rare earths and the potential health and environmental risks associated with extracting them. - Provides a review of current research and examines how rare earth metals can be used to prevent corrosion and applied to protect metals in such industries as aerospace and construction - Includes discussion on the potential of rare earth elements for self-healing, tunable and multifunctional coatings - Considers the cost and availability of the rare earths and the potential health and environmental risks associated with extracting them
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Rare metals include strategic metals that are in increasing demand and subject to supply risks. Metals represented include neodymium, dysprosium, scandium and others; platinum group metals including platinum, palladium, iridium, and others; battery related metals including lithium, cobalt, nickel, and aluminum; electronics-related materials including copper and gold; and refectory metals including titanium, niobium, zirconium, and hafnium. Other critical materials such as gallium, germanium, indium and silicon are also included. Papers cover various processing techniques, including but not limited to hydrometallurgy (solvent extraction, ion exchange, precipitation, and crystallization), electrometallurgy (electrorefining and electrowinning), pyrometallurgy, and aeriometallurgy (supercritical fluid extraction). Contributions are focused on primary production as well as secondary production through urban mining and recycling to enable a circular economy. ​A useful resource for all involved in commodity metal production, irrespective of the major metal Provides knowledge of cross-application among industries Extraction and processing of rare metals that are the main building block of many emerging critical technologies have been receiving significant attention in recent years. The technologies that rely on critical metals are prominent worldwide, and finding a way to extract and supply them effectively is highly desirable and beneficial.
The rare earths have a unique place among the elements. Although very much alike chemically and in most phy~ical properties they each have very different and striking magnetic properties. The reason, of course, lies in their 4f electrons which determine the magnetic properties but have little effect on other chemical and physical behaviour. Although they are not rare, some indeed are among the more common heavy elements in the earth's crust, the difficulty of separation has meant that their intricate magnetic properties have only recently been unravelled. Now, however, the general pattern of their magnetism is well charted and the underlying theory is well understood. Both are thoroughly summarised in this book. It provides an excellent example of the kind of extensive synthesis which is possible with modem solid state physics. it represents only a high plateau in the ascent to complete understanding. But It will become clear to the reader that while the overall position is satisfactory there are many details still to be elucidated experimentally and much to be done theoretically before all the underlying forces are identified and estimated from a priori calculations. It is hoped that the book will provide a useful stimulus in this direction. It should also be of use to those who are interested in related disciplines, for example the rare earth compounds, or the transition metals. In addition rare earths promise to be important technologically as alloy constituents.
How will your life change when the supply of tantalum dries up? You may have never heard of this unusual metal, but without it smartphones would be instantly less omniscient, video game systems would falter, and laptops fail. Tantalum is not alone. Rhodium. Osmium. Niobium. Such refugees from the bottom of the periodic table are key components of many consumer products like cell phones, hybrid car batteries, and flat screen televisions, as well as sophisticated medical devices and even weapon systems. Their versatile properties have led manufacturers to seek these elements out to maximize longevity, value, and efficiency, but not without a human price. In addition to explaining the chemistry behind rare earth metals, Rare delves into the economic and geopolitical issues surrounding these “conflict minerals,” blending tales of financial and political struggles with glimpses into the human lives that are shattered by the race to secure them. In the past decade, the Congo has been ravaged by tribal wars fought to obtain control of tantalum, tungsten, and tin supplies in the region, with over five million people dying at the crossroads of supply and demand. A burgeoning black market in China, Africa, and India is propped up by school-age children retrieving and purifying these metals while risking their lives and health in the process. Fears of future political struggles inside China, the world’s largest supplier of these metals, have already sent the United States, Great Britain, and Japan racing to find alternative sources. Will scientists be able to create lab substitutes for some or all of these metals? Will Afghanistan be the next big supplier of rare metals? What happens when the limited supply runs out? Whatever the answers, it is clear that our modern lifestyle, dependent on technology, is far from stable.
Rare metals play an important role in the development of major branches of industry, such as vacuum equipment, semiconductor electronics, nuclear power and rocket production, as well as in the production of special steels and hard, refractory and corrosion-resistant alloys.Rapid development and improvement in the production of rare metals took place in the ten years which have elapsed since the publication of the first edition of this book. These ten years have witnessed the beginning of large-scale production of titanium, zirconium, and germanium, and a significant increase in the production volume; new, improved methods for the separation and purification of metals and compounds (ion-exchange, extraction, crystallization methods) as well as arc and electron-beam melting processes for metals were developed. This made it necessary to rewrite most of this book.In view of the growing importance of the lanthanides and rhenium, chapters on these metals were also included. At the same time, we decided to dispense with the chapters on lead and antimony, since these are not usually listed as rare metals. In describing the metallurgy of each metal, much attention was paid to its physicochemical nature and to the practical operations involved in the main technological processes for the production of its chemical compounds and of the pure metal.This book is a textbook for students specializing in the metallurgy of the rare metals. It is assumed that the student is familiar with the physicochemical fundamentals .of metallurgy, ore dressing, metallurgical furnaces, and processes and apparatus used in extractive metallurgy. The description of standard equipment (leaching apparatus, thickeners, filters, comminution installations, etc.) has accordingly been omitted. The references are grouped together at the end of the book.
The Handbook of Rare Earth Elements focuses on the essential role of modern instrumental analytics in the recycling, purification and analysis of rare earth elements. Due to their numerous applications, e.g. in novel magnetic materials for computer hardware, mobile phones and displays, rare earth elements have become a strategic and valuable resource. The detailed knowledge of rare earth element contents at every step of their life cycle is of great importance. This reference work was compiled with contribution from an international team of expert authors from Academia and Industry to presend a comprehensive discussion on the state-of-the-art of rare earth element analysis for industrial and scientific purposes, recycling processes and purification of REEs from various sources. Written with Analytical Chemists, Inorganic Chemists, Spectroscopists as well as Industry Practitioners in mind, the Handbook of Rare Earth Elements is an indispensable reference for everyone working with rare earth elements.
Magnesium-based alloys containing rare-earth metals are important structural materials, as they combine low density with high-strength properties. This makes them particularly attractive for industry, especially in cases where the low weight of constructions is critical, as in aircraft and space apparatus construction. One of the remarkable feature