Download Free Rare Earth Metal Recovery For Green Technologies Book in PDF and EPUB Free Download. You can read online Rare Earth Metal Recovery For Green Technologies and write the review.

This book examines the development, use, extraction, and recovery of rare earth metals. Rare earth elements (REEs) occupy a key role in daily life in industrial applications. They are one of the critical elements for energy and sustainable growth. REEs are utilized in many modern electrical and electronic devices such as smart phones, computers, LED lights etc. Recovery of the REEs from secondary resources represents a way to meet the growing demand for electronic devices. Because of their rarity, utility, and importance, the recovery, utilization and recycling of rare earth metals is of utmost importance. This book presents both current methods of processing rare earths from primary and secondary sources and new, green routes for their isolation and purification. The book also addresses their utilization, re-use, reduction, and recycling policies that exist globally. Applications in metallurgy, magnets, ceramics, electronics, and chemical, optical, and nuclear technologies are discussed.
This book examines the development, use, extraction, and recovery of rare earth metals. Rare earth elements (REEs) occupy a key role in daily life in industrial applications. They are one of the critical elements for energy and sustainable growth. REEs are utilized in many modern electrical and electronic devices such as smart phones, computers, LED lights etc. Recovery of the REEs from secondary resources represents a way to meet the growing demand for electronic devices. Because of their rarity, utility, and importance, the recovery, utilization and recycling of rare earth metals is of utmost importance. This book presents both current methods of processing rare earths from primary and secondary sources and new, green routes for their isolation and purification. The book also addresses their utilization, re-use, reduction, and recycling policies that exist globally. Applications in metallurgy, magnets, ceramics, electronics, and chemical, optical, and nuclear technologies are discussed.
This second edition is fully updated with new material to create a comprehensive and accessible reference book: New chapters on sulfur removal via bioelectrochemical systems, use of sulfate radicals in advanced oxidation processes and sulfur nanoparticle biosynthesis. New sections on: sulfur cycle chemistry and microbiology; sulfate removal vs. recovery of resources from sulfate-rich wastewaters; microaeration for biogas desulfurisation; biological treatment of gypsum and sulfur-rich solid waste; up-to-date process control for treatment of sulfur-rich waste streams. New case studies with emphasis on practices for sewer and steel corrosion control, odour mitigation, autotrophic denitrification and bioremediation of acid mine polluted sites in both developed and developing countries have been included. Novel concepts of environmental technologies to treat sulfur pollution of wastewater, off-gases, solid waste, soils and sediments are presented. Up-to-date research findings and innovative technologies for recovering resources, i.e. metals, fertiliser, biofuels and irrigation water, from sulfur polluted waste are provided. This book may serve both as an advanced textbook for undergraduate and graduate students majoring in environmental sciences, technology or engineering as well as a handbook for tertiary educators, researchers, professionals and policymakers who conduct research and practices in the sulfur related fields. It is essential reading for consulting companies when dealing with sulfur related environmental (bio)technologies.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Topics include the extraction and processing of elements like antimony, arsenic, gold, indium, palladium, platinum, rare earth metals including yttrium and neodymium, titanium, tungsten, and vanadium. Rare processing techniques are covered, including direct extraction processes for rare-earth recovery, biosorption of precious metals, fluorination behavior of uranium and zirconium mixture of fuel debris treatment, and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
Increased consumption of electronic equipment has brought with it a greater demand for rare earth elements and metals. Adding to this is the growth in low carbon technologies such as hybrid fuel vehicles. It is predicted that the global supply of rare earth elements could soon be exhausted. A sustainable approach to the use and recovery of rare earth elements is needed, and this book addresses the political, economic and research agendas concerning them. The problem is discussed thoroughly and a multi-disciplinary team of authors from the chemistry, engineering and biotechnology sectors presents a range of solutions, from traditional metallurgical methods to innovations in biotechnology. Case studies add value to the theory presented, and indirect targets for recovery, such as municipal waste and combustion ash are considered. This book will be essential reading for researchers in academia and industry tackling sustainable element recovery, as well as postgraduate students in chemistry, engineering and biotechnology. Environmental scientists and policy makers will also benefit from reading about potential benefits of recovery from waste streams.
The growth and development witnessed today in modern science, engineering, and technology owes a heavy debt to the rare, refractory, and reactive metals group, of which niobium is a member. Extractive Metallurgy of Niobium presents a vivid account of the metal through its comprehensive discussions of properties and applications, resources and resource processing, chemical processing and compound preparation, metal extraction, and refining and consolidation. Typical flow sheets adopted in some leading niobium-producing countries for the beneficiation of various niobium sources are presented, and various chemical processes for producing pure forms of niobium intermediates such as chloride, fluoride, and oxide are discussed. The book also explains how to liberate the metal from its intermediates and describes the physico-chemical principles involved. It is an excellent reference for chemical metallurgists, hydrometallurgists, extraction and process metallurgists, and minerals processors. It is also valuable to a wide variety of scientists, engineers, technologists, and students interested in the topic.
The sustainable use of natural resources is an important global challenge, and improved metal sustainability is a crucial goal for the 21st century in order to conserve the supply of critical metals and mitigate the environmental and health issues resulting from unrecovered metals. Metal Sustainability: Global Challenges, Consequences and Prospects discusses important topics and challenges associated with sustainability in metal life cycles, from mining ore to beneficiation processes, to product manufacture, to recovery from end-of-life materials, to environmental and health concerns resulting from generated waste. The broad perspective presented highlights the global interdependence of the many stages of metal life cycles. Economic issues are emphasized and relevant environmental, health, political, industrial and societal issues are discussed. The importance of applying green chemistry principles to metal sustainability is emphasized. Topics covered include: • Recycling and sustainable utilization of precious and specialty metals • Formal and informal recycling from electronic and other high-tech wastes • Global management of electronic wastes • Metal reuse and recycling in developing countries • Effects of toxic and other metal releases on the environment and human health • Effect on bacteria of toxic metal release • Selective recovery of platinum group metals and rare earth metals • Metal sustainability from a manufacturing perspective • Economic perspectives on sustainability, mineral development, and metal life cycles • Closing the Loop – Minerals Industry Issues The aim of this book is to improve awareness of the increasingly important role metals play in our high-tech society, the need to conserve our metal supply throughout the metal life cycle, the importance of improved metal recycling, and the effects that unhindered metal loss can have on the environment and on human health.
This book deals with the rare earth elements (REE), which are a series of 17 transition metals: scandium, yttrium and the lanthanide series of elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium). They are relatively unknown to the wider public, despite their numerous applications and their critical role in many high-tech applications, such as high-temperature superconductors, phosphors (for energy-saving lamps, flat-screen monitors and flat-screen televisions), rechargeable batteries (household and automotive), very strong permanent magnets (used for instance in wind turbines and hard-disk drives), or even in a medical MRI application. This book describes the history of their discovery, the major REE ore minerals and the major ore deposits that are presently being exploited (or are planned to be exploited in the very near future), the physical and chemical properties of REEs, the mineral processing of REE concentrates and their extractive metallurgy, the applications of these elements, their economic aspects and the influential economical role of China, and finally the recycling of the REE, which is an emerging field.
This book presents the applications of ion-exchange materials in the chemical and food industries. It includes topics related to the application of ion exchange chromatography in water softening, purification and separation of chemicals, separation and purification of food products and catalysis. This title is a highly valuable source of knowledge on ion-exchange materials and their applications suitable for postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology. Additionally, this book will provide an in-depth knowledge of ion-exchange column and operations suitable for engineers and industrialists.
This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DoE) based on data collected and research performed during 2010. In the report, DoE describes plans to: (1) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the DoE during November and December 2010; (2) strengthen its capacity for information-gathering on this topic; and (3) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. Charts and tables. This is a print on demand report.