Download Free Radio Frequency Heating In Food Processing Book in PDF and EPUB Free Download. You can read online Radio Frequency Heating In Food Processing and write the review.

Radio-Frequency Heating in Food Processing: Principles and Applications covers the fundamentals of radio-frequency (RF) heating and the use of RF-heating technologies in modern food processing, preservation, and related industries. Focusing on industrial and lab-scale applications where RF heating has been employed successfully or reported to have
A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.
Thermal processing remains one of the most important processes in the food industry. Now in its second edition, Thermal Food Processing: New Technologies and Quality Issues continues to explore the latest developments in the field. Assembling the work of a worldwide panel of experts, this volume highlights topics vital to the food industry today an
This book consists of peer-reviewed articles reporting on the latest developments in several food engineering and agricultural processing laboratories at US land-granted universities. The contributors are leading experts in their respective fields.The topics covered in the book include new food processing technologies (such as high voltage electric field processing and microwave sterilization/pasteurization), conversion of agricultural by-products into high quality refined cellulose or biodegradable plastics, and advances in machine vision inspection and sorting techniques for fruit and vegetable packaging lines. Each chapter begins with a general background review with important references, and ends with the latest results from each research laboratory.
New packaging media such as flexible trays, pouches, and glass containers have superceded traditional canning with great results. The availability of such packaging opportunities has created the demand for products of more challenging rheological behavior that may contain differing degrees of particulate material and hence the need for new designs of heat exchanger. While the primary concern of food manufacturers is the production of safe foods, there is little market for low quality foods no matter how safe they are. The need to maximize process efficiency and final product quality has led to a number of new developments, including refinements in existing technologies and the emergence of new "minimal" techniques. Thermal Technologies in Food Processing reviews all these key developments and looks at future trends, providing an invaluable resource for all food processors.
The Handbook of Research on Food Processing and Preservation Technologies is a rich 5-volume collection that illustrates various design, development, and applications of novel and innovative strategies for food processing and preservation. The roles and applications of minimal processing techniques (such as ozone treatment, vacuum drying, osmotic dehydration, dense phase carbon dioxide treatment, pulsed electric field, and high-pressure assisted freezing) are discussed, along with a wide range of other applications. The handbook also explores some exciting computer-aided techniques emerging in the food processing sector, such as robotics, radio frequency identification (RFID), three-dimensional food printing, artificial intelligence, etc. Some emphasis has also been given on nondestructive quality evaluation techniques (such as image processing, terahertz spectroscopy imaging technique, near infrared, Fourier transform infrared spectroscopy technique, etc.) for food quality and safety evaluation. The significant roles of food properties in the design of specific foods and edible films have been elucidated as well. Volume 3: Computer-Aided Food Processing and Quality Evaluation Techniques of the multi-volume set reports on a number of applications of computer-aided techniques for quality evaluation and to secure food quality. The chapter authors present emerging nonthermal approaches for food processing and preservation including a detailed discussion on color measurement techniques, RFID, 3D-food printing, potential of robotics, artificial intelligence, terahertz spectroscopy imaging technique, instrumentation techniques and transducers, food labeling as marketing and quality assurance tool, detection of pesticides, mathematical simulation of moisture sorption in food products, numerical methods and modeling techniques, concept of phase change materials, and dielectric properties of animal source foods. Other volumes in the set include: Volume 1: Nonthermal and Innovative Food Processing Methods Volume 2: Nonthermal Food Preservation and Novel Processing Strategies Volume 3: Computer-Aided Food Processing and Quality Evaluation Techniques Volume 4: Design and Development of Specific Foods, Packaging Systems, and Food Safety Volume 5: Emerging Techniques for Food Processing, Quality, and Safety Assurance Along with the other volumes, Handbook of Research on Food Processing and Preservation Technologies provides an abundance of valuable information and will be an excellent reference for researchers, scientists, students, growers, traders, processors, industries, and others.
Ohmic heating provides rapid and uniform heating, resulting in less thermal damage than conventional heating and allowing manufacturers to obtain high-quality products with minimum sensorial, nutritional, and structural changes. Ohmic Heating in Food Processing covers several aspects of Ohmic heating: science and engineering, chemistry and physics,
This book presents the latest developments in the area of non-thermal preservation of foods and covers various topics such as high-pressure processing, pulsed electric field processing, pulsed light processing, ozone processing, electron beam processing, pulsed magnetic field, ultrasonics, and plasma processing. Non-thermal Processing of Foods discusses the use of non-thermal processing on commodities such as fruits and vegetables, cereal products, meat, fish and poultry, and milk and milk products. Features: Provides latest information regarding the use of non-thermal processing of food products Provides information about most of the non-thermal technologies available for food processing Covers food products such as fruits and vegetables, cereal products, meat, fish and poultry, and milk and milk products Discusses the packaging requirements for foods processed with non-thermal techniques The effects of non-thermal processing on vital food components, enzymes and microorganisms is also discussed. Safety aspects and packaging requirements for non-thermal processed foods are also presented. Rounding out coverage of this technology are chapters that cover commercialization, regulatory issues and consumer acceptance of foods processed with non-thermal techniques. The future trends of non-thermal processing are also investigated. Food scientists and food engineers, food regulatory agencies, food industry personnel and academia (including graduate students) will find valuable information in this book. Food product developers and food processors will also benefit from this book.
Advanced and novel thermal technologies, such as ohmic heating, dielectric heating (e.g., microwave heating and radio frequency heating), and inductive heating, have been developed to improve the effectiveness of heat processing whilst guaranteeing food safety and eliminating undesirable impacts on the organoleptic and nutritional properties of foods. Novel thermal technologies rely on heat generation directly inside foods, which has implications for improving the overall energy efficiency of the heating process itself. The use of novel thermal technologies is dependent on the complexity and inherent properties of the food materials of interest (e.g., thermal conductivity, electrical resistance, water content, pH, rheological properties, food porosity, and presence of particulates). Moreover, there is a need to address the combined use of thermal processing with emerging technologies such as pulsed electric fields, high hydrostatic pressure, and ultrasound to complement the conventional thermal processing of fluid or solid foods. This Special Issue provides readers with an overview of the latest applications of various novel technologies in food processing. A total of eight cutting-edge original research papers and one comprehensive review paper discussing novel processing technologies from the perspectives of food safety, sustainability, process engineering, (bio)chemical changes, health, nutrition, sensory issues, and consumers are covered in this Special Issue.
Humanity's ability to produce enough food is mostly due to adoption of new methods and technologies by the agricultural industries as they became available. New information, communication and high speed processing and precision agriculture technologies have the potential to transform the agricultural industry. These technologies incorporate radio-frequency and microwave radiation into their systems. This book presents an overview of how these technologies are being used in agricultural systems. The main purpose of the book is to provide a glimpse of what is possible and encourage practitioners in the engineering and agricultural industries to explore how radio-frequency and microwave systems might further enhance the agricultural industry. The authors have extensive experience in agricultural and microwave engineering, instrumentation and communication systems.