Download Free Quantum Physics A First Encounter Book in PDF and EPUB Free Download. You can read online Quantum Physics A First Encounter and write the review.

The essential features of quantum physics, largely debated since its discovery, are presented in this book, through the description (without mathematics) of recent experiments. Putting the accent on physical phenomena, this book clarifies the historical issues (delocalisation, interferences) and reaches out to modern topics (quantum cryptography, non-locality and teleportation); the debate on interpretations is serenely reviewed.
Quantum physics is often perceived as a weird and abstract theory, which physicists must use in order to make correct predictions. But many recent experiments have shown that the weirdness of the theory simply mirrors the weirdness of phenomena: it is Nature itself, and not only our description of it, that behaves in an astonishing way. This book selects those, among these typical quantum phenomena, whose rigorous description requires neither the formalism, nor an important background in physics. The first part of the book deals with the phenomenon of single-particle interference, covering the historical questions of wave-particle duality, objective randomness and the boundary between the quantum and the classical world, but also the recent idea of quantum cryptography. The second part introduces the modern theme of entanglement, by presenting two-particle interference phenomena and discussing Bell's inequalities. A concise review of the main interpretations of quantum physics is provided.
Quantum physics is known to be challenging for two reasons: it describes counter-intuitive phenomena and employs rather advanced mathematics. This title presents a fresh approach to quantum physics, the core of modern physics.
In trying to understand the atom, physicists built quantum mechanics, the most successful theory in science and the basis of one-third of our economy. They found, to their embarrassment, that with their theory, physics encounters consciousness. Authors Bruce Rosenblum and Fred Kuttner explain all this in non-technical terms with help from some fanciful stories and anecdotes about the theory's developers. They present the quantum mystery honestly, emphasizing what is and what is not speculation. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is heatedly controversial. But every interpretation of quantum physics involves consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum mechanics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing. Readers are brought to a boundary where the particular expertise of physicists is no longer the only sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves. In the few decades since the Bell's theorem experiments established the existence of entanglement (Einstein's "spooky action"), interest in the foundations, and the mysteries, of quantum mechanics has accelerated. In recent years, physicists, philosophers, computer engineers, and even biologists have expanded our realization of the significance of quantum phenomena. This second edition includes such advances. The authors have also drawn on many responses from readers and instructors to improve the clarity of the book's explanations.
Starting with a simple quantum theory postulate, this text introduces mathematical techniques that help answer questions important to physical theory. The entire book is devoted to study of a particle moving in a straight line; students develop mathematical techniques by answering questions about the particle. 1981 edition.
This bestselling textbook teaches students how to do quantum mechanics and provides an insightful discussion of what it actually means.
A new presentation of quantum theory and quantum information based on fundamental principles, for anyone seeking a deeper understanding of the subject.
The unique features of the quantum world are explained in this book through the language of diagrams, setting out an innovative visual method for presenting complex theories. Requiring only basic mathematical literacy, this book employs a unique formalism that builds an intuitive understanding of quantum features while eliminating the need for complex calculations. This entirely diagrammatic presentation of quantum theory represents the culmination of ten years of research, uniting classical techniques in linear algebra and Hilbert spaces with cutting-edge developments in quantum computation and foundations. Written in an entertaining and user-friendly style and including more than one hundred exercises, this book is an ideal first course in quantum theory, foundations, and computation for students from undergraduate to PhD level, as well as an opportunity for researchers from a broad range of fields, from physics to biology, linguistics, and cognitive science, to discover a new set of tools for studying processes and interaction.
Introduction to Quantum Mechanics is an introduction to the power and elegance of quantum mechanics. Assuming little in the way of prior knowledge, quantum concepts are carefully and precisely presented, and explored through numerous applications and problems. Some of the more challenging aspects that are essential for a modern appreciation of the subject have been included, but are introduced and developed in the simplest way possible. Undergraduates taking a first course on quantum mechanics will find this text an invaluable introduction to the field and help prepare them for more advanced courses. Introduction to Quantum Mechanics: * Starts from basics, reviewing relevant concepts of classical physics where needed. * Motivates by considering weird behaviour of quantum particles. * Presents mathematical arguments in their simplest form.
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.