Download Free Quantum Group And Quantum Integrable Systems Nankai Lectures On Mathematical Physics Book in PDF and EPUB Free Download. You can read online Quantum Group And Quantum Integrable Systems Nankai Lectures On Mathematical Physics and write the review.

This volume contains the lectures given by the three speakers, M Jimbo, P P Kulish and E K Sklyanin, who are outstanding experts in their field. It is essential reading to those working in the fields of Quantum Groups, and Integrable Systems.
This volume contains the lectures given by the three speakers, M Jimbo, P P Kulish and E K Sklyanin, who are outstanding experts in their field. It is essential reading to those working in the fields of Quantum Groups, and Integrable Systems.
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
This workshop is part of a series of annual workshops organised by the Nankai Institute of Mathematics. Prominent scientists from abroad are invited to deliver the main lectures.
This volume contains intense studies on Quantum Groups, Knot Theory, Statistical Mechanics, Conformal Field Theory, Differential Geometry and Differential Equation Methods and so on. It has contributions by renowned experts and covers most of the recent developments in these fields.
This book, which explores recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, combinatorics, quantum algebras, and theoretical field, is conceived as a handbook to provide easy access to the present state of knowledge and stimulate further development. The many topics discussed include quivers, quivers with potential, bound quiver algebras, Jacobian algebras, cluster algebras and categories, Calabi-Yau algebras and categories, triangulated and derived categories, and quantum loop algebras. This book consists of thirteen self-contained expository survey and research articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. The articles contain a large number of examples and open problems and give new perspectives for research in the field.
An important task of theoretical quantum physics is the building of idealized mathematical models to describe the properties of quantum matter. This book provides an introduction to the arguably most important method for obtaining exact results for strongly interacting models of quantum matter - the Bethe ansatz. It introduces and discusses the physical concepts and mathematical tools used to construct realistic models for a variety of different fields, including condensed matter physics and quantum optics. The various forms of the Bethe ansatz - algebraic, coordinate, multicomponent, and thermodynamic Bethe ansatz, and Bethe ansatz for finite systems - are then explained in depth and employed to find exact solutions for the physical properties of the integrable forms of strongly interacting quantum systems. The Bethe ansatz is one of the very few methodologies which can calculate physical properties non-perturbatively. Arguably, it is the only such method we have which is exact. This means, once the model has been set up, no further approximations or assumptions are necessary, and the relevant physical properties of the model can be computed exactly. Furthermore, an infinite set of conserved quantities can be obtained. The quantum mechanical model under consideration is fully integrable. This makes the search for quantum models which are amenable to an exact solution by the Bethe ansatz, and which are quantum integrable, so important and rewarding. The exact solution will provide benchmarks for other models, which do not admit an exact solution. Bethe ansatz techniques provide valuable insight into the physics of strongly correlated quantum matter.
This is the fourth conference on “Supersymmetry and Perturbation Theory” (SPT 2002). The proceedings present original results and state-of-the-art reviews on topics related to symmetry, integrability and perturbation theory, etc.
Contents: An Outline of the Geometrical Theory of the Separation of Variables in the Hamilton-Jacobi and Schrodinger Equations (S Benenti); Partial Symmetries and Symmetric Sets of Solutions to PDEs (G Cicogna); Bifurcations in Flow-Induced Vibrations (S Fatimah & F Verhulst); Steklov-Lyapunov Type Systems (Y Fedorov); Renormalization Group and Summation of Divergent Series for Hyperbolic Invariant Tori (G Gentile); On the Linearization of holomorphic Vector Fields in the Siegel Domain with Linear Parts Having Nontrivial Jordan Blocks (T Gramchev); On the Algebro Geometric Solution of a 3x3 Matrix Riemann-Hilbert Problem (v Enolskii & T Grava); Smooth Normalization of a Vector Field Near an Invariant Manifold ((a Kopanskii); Inverse Problems for SL(2) Lattices (V Kuznetsov); Some Remarks about the Geometry of Hamiltonian Conservation Laws (J P Ortega); Janet's Algorithm (W Plesken); Some Integrable Billiards (E Previato); Symmetries of Relative Equilibria for Simple Mechanical Systems (M R Olmos & M E S Dias); A Spectral Sequences Approach to Normal Forms (J Sanders); Rational Parametrization of Strata in Orbit Spaces of Compact Linear Groups (G Sartori & G Valente); Effective Hamiltonians and Perturbation Theory for Quantum Bound States of Nucleur Motion in Molecules (V Tyuterev); Generalized Hasimoto Transformation and Vector Sine-Gordon Equation (J P Wang); and other papers. Readership: Researchers and graduate students in mathematical and theoretical physics, and nonlinears science.
This volume is a collection of dedicated reviews covering all aspects of theoretical high energy physics and some aspects of solid state physics. Some of the papers are broad reviews of topics that span the entire field while others are surveys of authors' personal achievements. This is the most comprehensive review collection reflecting state of the art at the end of 2004. An important and unique aspect is a special effort the authors have invested in making the presentation pedagogical.