Download Free Quantitative Genetics And Breeding Methods In Autopolyploid Plants Book in PDF and EPUB Free Download. You can read online Quantitative Genetics And Breeding Methods In Autopolyploid Plants and write the review.

This book presents basic information about population genetics, quantitative genetics, breeding methods and creation of new varieties taking into account the particular characteristics of autopolyploidy. A number of results are given as a function of ploidy level, the case of diploidy being considered as a specific case. QTL detection and marker assisted selection are also addressed. This book is intended for researchers working on autopolyploid species, as well as for lecturers and students who want to gain better knowledge of these issues by considering the ploidy level. It will also be valuable to breeders wishing to choose methods for breeding and creating the most adapted varieties.
This book presents basic information about population genetics, quantitative genetics, breeding methods and creation of new varieties taking into account the particular characteristics of autopolyploidy. A number of results are given as a function of ploidy level, the case of diploidy being considered as a specific case. QTL detection and marker assisted selection are also addressed. This book is intended for researchers working on autopolyploid species, as well as for lecturers and students who want to gain better knowledge of these issues by considering the ploidy level. It will also be valuable to breeders wishing to choose methods for breeding and creating the most adapted varieties.
The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.
Grassland farming in Europe was already established during the settlement of the rst farmers together with their domesticated animals after the last ice age. Since then, grassland provides the forage basis to feed ruminant animals for the p- duction of meat and milk. Depending on the ecological conditions and intensity of usage, various plant communities with different species developed, displaying a rich biodiversity. With the introduction of improved crop rotations at the end of the 16th century, grasses and legumes were also grown to an important extent as forage crops on arable land. In the last decades the importance of amenity grasses increased markedly, due to the demand of the society for new usages like landscape protection. Around 1900 interested farmers and academics identi ed the need for gra- land improvement through systematic selection and seed production. This marks the beginning of breeding and research in companies but also at universities and specialized research institutes. Plant collection started with many of the species that are still of importance today. The collected materials were grouped according to the intended use and some type of phenotypic selection was applied. Seed mul- plication of such populations was performed in pure stands and the harvested seed was marketed. Although the vegetative biomass and its quality are of utmost imp- tance in forage crop breeding, it is the seed yield potential which determines the commercial success of a new variety.
A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.
In this volume, world leaders in potato research review historical and contemporary discoveries resulting in a range of advances. Topics include nutritional quality, yield, disease and insect resistance, processing, plant growth and development, and other aspects. The book also examines research yielding significant molecular resources that facilit
Genomic selection (GS) has been the most prominent topic in breeding science in the last two decades. The continued interest is promoted by its huge potential impact on the efficiency of breeding. Predicting a breeding value based on molecular markers and phenotypic values of relatives may be used to manipulate three parameters of the breeder's equation. First, the accuracy of the selection may be improved by predicting the genetic value more reliably when considering the records of relatives and the realized genomic relationship. Secondly, genotyping and predicting may be more cost effective than comprehensive phenotyping. Resources can instead be allocated to increasing population sizes and selection intensity. The third, probably most important factor, is time. As shown in dairy cattle breeding, reducing cycle time by crossing selection candidates earlier may have the strongest impact on selection gain. Many different prediction models have been used, and different ways of using predicted values in a breeding program have been explored. We would like to address the questions: i. How did GS change breeding schemes of different crops in the last 20 years? ii. What was the impact on realized selection gain? iii. What would be the best structure of a crop-specific breeding scheme to exploit the full potential of GS? iv. What is the potential of hybrid prediction, epistasis effect models, deep learning methods and other extensions of the standard prediction of additive effects? v. What are the long-term effects of GS? vi. Can predictive breeding approaches also be used to harness genetic resources from germplasm banks in a more efficient way to adapt current germplasm to new environmental challenges? This Research Topic welcomes submissions of Original Research papers, Opinions, Perspectives, Reviews, and Mini-Reviews related to these themes: 1. Genomic selection: statistical methodology 2. The (optimal) use of GS in breeding schemes 3. Practical experiences with GS (selection gain, long-term effects, negative side effects) 4. Predictive approaches to harness genetic resources Concerning point 1): If an original research paper compares different methods empirically without theoretical considerations on when one or the other method should be better, the methods should be compared with at least five different data sets. The data sets should differ either in crop, genotyping method or its source, for instance from a breeding program or gene bank accessions. Concerning point 2): Manuscripts addressing the use of GS in breeding schemes should illustrate breeding schemes that are run in practice. General ideas about schemes that may be run in the future may be considered as 'Perspective' articles. Conflict of Interest statements: - Topic Editor Valentin Wimmer is affiliated to KWS SAAT SE & Co. KGaA, Germany. - Topic Editor Brian Gardunia is affiliated to Bayer Crop Sciences and has a collaboration with AbacusBio, and is an author on patents with Bayer Crop Sciences. The other Topic Editors did not disclose any conflicts of interest. Image credit: CIMMYT, reproduced under the CC BY-NC-SA 2.0 license
The 5th International Symposium on the Molecular Breeding of Forage and Turf covers all aspects of molecular breeding of forage and turf plants, from gene discovery, functional genomics, molecular genetics and marker technology, marker-assisted selection, transgenesis to transgenic molecular breeding; address applications - among others - for enhanced quality, tolerance to biotic and abiotic stresses; relating to forage grasses, forage legumes, their bacterial and fungal endosymbionts, as well as turf grasses. The Symposium includes keynote presentations from international science leaders in the above fields and offer abstracts in the following topics - breeding and functional genomics for tolerance to biotic stress, - Molecular breeding and functional genomics for tolerance to abiotic stress, - Molecular genetics and modification of flowering and reproductive development, - Genomics of plant-symbiont relations, - Molecular breeding for animal, human and environmental welfare, - Development and Application of molecular technologies in forage and turf improvement, - Bioinformatics-bringing data to a usable form for breeders, - Population and quantitative genetic aspects of molecular breeding, - Gene manipulation, field testing, risk assessment and biosafety, - Intellectual property rights for molecular tools or marker systems.