Download Free Quantitative Elements Of General Biology Book in PDF and EPUB Free Download. You can read online Quantitative Elements Of General Biology and write the review.

This monograph sketches out a broad spectrum of problems (from evolution and metabolism to morphogenesis and biogeographical dynamics) whose solution has been impacted by mathematical models. Each of the selected examples has led to the recognition—and set direction to further study—of certain fundamental but unintuitive properties of biological systems, such as the making and breaking of specific symmetries that underlie morphogenesis. Whether they are long-established or only recently accepted, these models are selected for being thought-provoking and illuminating both the achievements and the gaps in our current understanding of the given area of biology. The selection of models is also meant to bring to the fore the existing degree of unity in the quantitative approach to diverse general-biological questions and in the systems-level properties that are discovered across the levels of biological organization. It is the thesis of this book that further cultivation of such unity is a way forward as we progress toward a general theory of living matter. This is an ideal book for students (in the broadest sense) of biology who wish to learn from this attempt to present the exemplary models, their methodological lessons, and the outline of a unified theory of living matter that is now beginning to emerge. In addition to a doctoral student preparing for quantitative biology research, this reader could also be an interdisciplinary scientist transitioning to biology. The latter—for example, a physicist or an engineer—may be comfortable with the mathematical apparatus and prepared to quickly enter the intended area of work, but desires a broader foundation in biology from the quantitative perspective.
Quantitative methods specifically tailored for the marine biologist While there are countless texts published on quantitative methods and many texts that cover quantitative terrestrial ecology, this text fills the need for the special quantitative problems confronting marine biologists and biological oceanographers. The author combines common quantitative techniques with recent advances in quantitative methodology and then demonstrates how these techniques can be used to study marine organisms, their behaviors, and their interactions with the environment. Readers learn how to better design experiments and sampling, employ sophisticated mathematical techniques, and accurately interpret and communicate the results. Most of this text is written at an introductory level, with a few topics that advance to more complex themes. Among the topics covered are plot/plotless sampling, biometrics, experimental design, game theory, optimization, time trends, modeling, and environmental impact assessments. Even readers new to quantitative methods will find the material accessible, with plenty of features to engage their interest, promote learning, and put their knowledge into practice: * One or more examples are provided to illustrate each individual quantitative technique presented in the text * The accompanying CD-ROM features two multimedia programs, several statistical programs, help to run complex statistical programs, and additional information amplifying topics covered in the text * References lead readers to additional information to pursue individual topics in greater depth Quantitative Analysis of Marine Biological Communities, with its extensive use of examples, is ideal for undergraduate and graduate students in marine biology. Marine biologists, regardless of their level of experience, will also discover new approaches to quantitative analysis tailored to the particular needs of their field.
The goal of this book is to provide practical, intelligible, and intuitive explanations of population modelling to empirical ecologists and conservation biologists. Modelling methods that do not require large amounts of data (typically unavailable for endangered species) are emphasised. As such, the book is appropriate for undergraduate and graduate students interested in quantitative conservation biology, managers charged with preserving endangered species, and, in short, for any conservation biologist or ecologist seeking to better understand the analysis and modelling of population data.
This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.
Quantitative Research in Human Biology and Medicine reflects the author's past activities and experiences in the field of medical statistics. The book presents statistical material from a variety of medical fields. The text contains chapters that deal with different aspects of vital statistics. It provides statistical surveys of perinatal mortality rate; epidemiology of various diseases, like cancer, tuberculosis, malaria, diphtheria, and scarlatina; and discussions of various aspects of human biology such as growth and development, genetics, and nutrition. The inheritance of mental qualities; the law governing multiple births; and historical demography are covered as well. Medical statisticians and physicians will find the book interesting.
This monograph sketches out a broad spectrum of problems (from evolution and metabolism to morphogenesis and biogeographical dynamics) whose solution has been impacted by mathematical models. Each of the selected examples has led to the recognition and set direction to further study of certain fundamental but unintuitive properties of biological systems, such as the making and breaking of specific symmetries that underlie morphogenesis. Whether they are long-established or only recently accepted, these models are selected for being thought-provoking and illuminating both the achievements and the gaps in our current understanding of the given area of biology. The selection of models is also meant to bring to the fore the existing degree of unity in the quantitative approach to diverse general-biological questions and in the systems-level properties that are discovered across the levels of biological organization. It is the thesis of this book that further cultivation of such unity is a way forward as we progress toward a general theory of living matter. This is an ideal book for students (in the broadest sense) of biology who wish to learn from this attempt to present the exemplary models, their methodological lessons, and the outline of a unified theory of living matter that is now beginning to emerge. In addition to a doctoral student preparing for quantitative biology research, this reader could also be an interdisciplinary scientist transitioning to biology. The latter for example, a physicist or an engineer may be comfortable with the mathematical apparatus and prepared to quickly enter the intended area of work, but desires a broader foundation in biology from the quantitative perspective.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
The effective design of scientific experiments is critical to success, yet graduate students receive very little formal training in how to do it. Based on a well-received course taught by the author, Experimental Design for Biologistsfills this gap. Experimental Design for Biologistsexplains how to establish the framework for an experimental project, how to set up a system, design experiments within that system, and how to determine and use the correct set of controls. Separate chapters are devoted to negative controls, positive controls, and other categories of controls that are perhaps less recognized, such as “assumption controls†and “experimentalist controls†. Furthermore, there are sections on establishing the experimental system, which include performing critical “system controls†. Should all experimental plans be hypothesis-driven? Is a question/answer approach more appropriate? What was the hypothesis behind the Human Genome Project? What color is the sky? How does one get to Carnegie Hall? The answers to these kinds of questions can be found in Experimental Design for Biologists. Written in an engaging manner, the book provides compelling lessons in framing an experimental question, establishing a validated system to answer the question, and deriving verifiable models from experimental data. Experimental Design for Biologistsis an essential source of theory and practical guidance in designing a research plan.