Download Free Pythagorean Semi Open Sets In Pythagorean Neutroshophic Pythagorean Spaces Book in PDF and EPUB Free Download. You can read online Pythagorean Semi Open Sets In Pythagorean Neutroshophic Pythagorean Spaces and write the review.

In this paper, we introduce and study a new notion of Pythagorean neutrosophic set which is called Pythagorean neutrosophic semi-open sets. Besides, we define the concepts of Pythagorean neutosophic semi-open function, Pythagorean neutrosophic semi-continuous function and Pythagorean neutrosophic semi-homeomorphism. Moreover, some of their properties are shown.
In this paper we define the notion of Pythagorean neutrosophic b-open sets (resp. b-closed) and Pythagorean neutrosophic semiopen sets (resp. preopen and gamma -open). Their properties are investigated.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. In this issue: On Neutrosophic Crisp Sets and Neutrosophic Crisp Mathematical Morphology, New Results on Pythagorean Neutrosophic Open Sets in Pythagorean Neutrosophic Topological Spaces, Comparative Mathematical Model for Predicting of Financial Loans Default using Altman Z-Score and Neutrosophic AHP Methods.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.
Hypersoft set is a generalization of soft sets, which takes into account a multiargument function. The main objective of this work is to introduce fuzzy semiopen and closed hypersoft sets and study some of their characterizations and also to present neutrosophic semiopen and closed hypersoft sets, an extension of fuzzy hypersoft sets, along with few basic properties. We propose two algorithms based on neutrosophic hypersoft open sets and topology to obtain optimal decisions in MAGDM. The efficiency of the algorithms proposed is demonstrated by applying them to the current COVID-19 scenario.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
Papers on neutrosophic programming, neutrosophic hypersoft set, neutrosophic topological spaces, NeutroAlgebra, NeutroGeometry, AntiGeometry, NeutroNearRings, neutrosophic differential equations, etc.
This volume presents state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, and neutrosophic symmetry, as well as their applications in the real world.