Download Free Psychometrika Book in PDF and EPUB Free Download. You can read online Psychometrika and write the review.

List of members of the society in v. 1, 4.
This book is open access under a CC BY-NC 2.5 license.​​ This book describes the extensive contributions made toward the advancement of human assessment by scientists from one of the world’s leading research institutions, Educational Testing Service. The book’s four major sections detail research and development in measurement and statistics, education policy analysis and evaluation, scientific psychology, and validity. Many of the developments presented have become de-facto standards in educational and psychological measurement, including in item response theory (IRT), linking and equating, differential item functioning (DIF), and educational surveys like the National Assessment of Educational Progress (NAEP), the Programme of international Student Assessment (PISA), the Progress of International Reading Literacy Study (PIRLS) and the Trends in Mathematics and Science Study (TIMSS). In addition to its comprehensive coverage of contributions to the theory and methodology of educational and psychological measurement and statistics, the book gives significant attention to ETS work in cognitive, personality, developmental, and social psychology, and to education policy analysis and program evaluation. The chapter authors are long-standing experts who provide broad coverage and thoughtful insights that build upon decades of experience in research and best practices for measurement, evaluation, scientific psychology, and education policy analysis. Opening with a chapter on the genesis of ETS and closing with a synthesis of the enormously diverse set of contributions made over its 70-year history, the book is a useful resource for all interested in the improvement of human assessment.
Drawing on the work of 75 internationally acclaimed experts in the field, Handbook of Item Response Theory, Three-Volume Set presents all major item response models, classical and modern statistical tools used in item response theory (IRT), and major areas of applications of IRT in educational and psychological testing, medical diagnosis of patient-reported outcomes, and marketing research. It also covers CRAN packages, WinBUGS, Bilog MG, Multilog, Parscale, IRTPRO, Mplus, GLLAMM, Latent Gold, and numerous other software tools. A full update of editor Wim J. van der Linden and Ronald K. Hambleton’s classic Handbook of Modern Item Response Theory, this handbook has been expanded from 28 chapters to 85 chapters in three volumes. The three volumes are thoroughly edited and cross-referenced, with uniform notation, format, and pedagogical principles across all chapters. Each chapter is self-contained and deals with the latest developments in IRT.
Drawing on the work of internationally acclaimed experts in the field, Handbook of Item Response Theory, Volume Two: Statistical Tools presents classical and modern statistical tools used in item response theory (IRT). While IRT heavily depends on the use of statistical tools for handling its models and applications, systematic introductions and reviews that emphasize their relevance to IRT are hardly found in the statistical literature. This second volume in a three-volume set fills this void. Volume Two covers common probability distributions, the issue of models with both intentional and nuisance parameters, the use of information criteria, methods for dealing with missing data, and model identification issues. It also addresses recent developments in parameter estimation and model fit and comparison, such as Bayesian approaches, specifically Markov chain Monte Carlo (MCMC) methods.
This volume constitutes the Proceedings of the joint meeting of GLIM89 and the 4th International Workshop on statistical Modelling, held in Trento, Italy, from 17 to 21 July 1989. The meeting aimed to bring together researchers interested in the development and application of generalized linear modelling in GLIM and those interested in statistical modelling in its widest sense. This joint meeting built upon the success of previous workshops held in Innsbruck, perugia and Vienna, and upon the two previous GLIM conferences , GLIM82 and GLIM85. The Proceedings of the latter two being available as numbers 14 and 32 in the springer Verlag series of Lecture Notes in Statistics). Much statistical modelling is carried out using GLIM, as is apparent from many of the papers in these Proceedings; however, the Programme Committee were also keen on encouraging papers which discussed more general modelling techniques. Thus about a third of the papers in this volume are outside the GLIM framework. The Programme Committee specifically requested non-theoretical papers in addition to considering theoretical contributions. Thus there are papers in a wide range of practical areas, such as radio spectral occupancy, comparison of birthweights, intervals between births, accidents of railway workers, genetics, demography, medical trials, the social sciences and insurance. A wide range of theoretical developments are discussed, for example, overdispersion, non-exponential family modelling, novel approaches to analysing contingency tables, random effects models, Kalman Filtering, model checking and extensions of Wedderburn's theoretical underpinning of GLMs.
This book provides comprehensive reviews of recent progress in matrix variate and tensor variate data analysis from applied points of view. Matrix and tensor approaches for data analysis are known to be extremely useful for recently emerging complex and high-dimensional data in various applied fields. The reviews contained herein cover recent applications of these methods in psychology (Chap. 1), audio signals (Chap. 2) , image analysis from tensor principal component analysis (Chap. 3), and image analysis from decomposition (Chap. 4), and genetic data (Chap. 5) . Readers will be able to understand the present status of these techniques as applicable to their own fields. In Chapter 5 especially, a theory of tensor normal distributions, which is a basic in statistical inference, is developed, and multi-way regression, classification, clustering, and principal component analysis are exemplified under tensor normal distributions. Chapter 6 treats one-sided tests under matrix variate and tensor variate normal distributions, whose theory under multivariate normal distributions has been a popular topic in statistics since the books of Barlow et al. (1972) and Robertson et al. (1988). Chapters 1, 5, and 6 distinguish this book from ordinary engineering books on these topics.
A Single Cohesive Framework of Tools and Procedures for Psychometrics and Assessment Bayesian Psychometric Modeling presents a unified Bayesian approach across traditionally separate families of psychometric models. It shows that Bayesian techniques, as alternatives to conventional approaches, offer distinct and profound advantages in achieving many goals of psychometrics. Adopting a Bayesian approach can aid in unifying seemingly disparate—and sometimes conflicting—ideas and activities in psychometrics. This book explains both how to perform psychometrics using Bayesian methods and why many of the activities in psychometrics align with Bayesian thinking. The first part of the book introduces foundational principles and statistical models, including conceptual issues, normal distribution models, Markov chain Monte Carlo estimation, and regression. Focusing more directly on psychometrics, the second part covers popular psychometric models, including classical test theory, factor analysis, item response theory, latent class analysis, and Bayesian networks. Throughout the book, procedures are illustrated using examples primarily from educational assessments. A supplementary website provides the datasets, WinBUGS code, R code, and Netica files used in the examples.
Factor analysis is one of the success stories of statistics in the social sciences. The reason for its wide appeal is that it provides a way to investigate latent variables, the fundamental traits and concepts in the study of individual differences. Because of its importance, a conference was held to mark the centennial of the publication of Charles Spearman's seminal 1904 article which introduced the major elements of this invaluable statistical tool. This book evolved from that conference. It provides a retrospective look at major issues and developments as well as a prospective view of future directions in factor analysis and related methods. In so doing, it demonstrates how and why factor analysis is considered to be one of the methodological pillars of behavioral research. Featuring an outstanding collection of contributors, this volume offers unique insights on factor analysis and its related methods. Several chapters have a clear historical perspective, while others present new ideas along with historical summaries. In addition, the book reviews some of the extensions of factor analysis to such techniques as latent growth curve models, models for categorical data, and structural equation models. Factor Analysis at 100 will appeal to graduate students and researchers in the behavioral, social, health, and biological sciences who use this technique in their research. A basic knowledge of factor analysis is required and a working knowledge of linear algebra is helpful.