Download Free Proximity Moving Horizon Estimation Book in PDF and EPUB Free Download. You can read online Proximity Moving Horizon Estimation and write the review.

In this thesis, we develop and analyze a novel framework for moving horizon estimation (MHE) of linear and nonlinear constrained discrete-time systems, which we refer to as proximity moving horizon estimation. The conceptual idea of the proposed framework is to employ a stabilizing a priori solution in order to ensure stability of MHE and to combine it with an online convex optimization in order to obtain an improved performance without jeopardizing stability. The goal of this thesis is to provide proximity-based MHE approaches with desirable theoretical properties and for which reliable and numerically efficient algorithms allow the estimator to be applied in real-time applications. In more detail, we present constructive and simple MHE design procedures which are tailored to the considered class of dynamical systems in order to guarantee important properties of the resulting estimation error dynamics. Furthermore, we develop computationally efficient MHE algorithms in which a suboptimal state estimate is computed at each time instant after an arbitrary and limited number of optimization algorithm iterations. In particular, we introduce a novel class of anytime MHE algorithms which ensure desirable stability and performance properties of the estimator for any number of optimization algorithm iterations, including the case of a single iteration per time instant. In addition to the obtained theoretical results, we discuss the tuning of the performance criteria in proximity MHE given prior knowledge on the system disturbances and illustrate the theoretical properties and practical benefits of the proposed approaches with various numerical examples from the literature.
In this thesis, we present novel model predictive control (MPC) formulations based on a convex open-loop optimal control problem to tackle the problem setup of trajectory tracking and path following as well as the control of systems with unknown system dynamic. In particular, we consider the framework of relaxed barrier function based MPC (rbMPC). We extend the existing stability theory to the trajectory tracking and the path following problem. We establish important system theoretic properties like closed-loop stability and exact constraint satisfaction under suitable assumptions. Moreover, we evaluate the developed MPC algorithms in the area of automated driving in simulations as well as in a real-world driving scenario. Further, we consider the control of completely unknown systems based on online optimization. We divide the overall problem into the design of an estimation algorithm and a control algorithm. The control algorithm is a model-independent receding horizon control algorithm in which important system theoretic properties like convergence to the origin are guaranteed without the knowledge of the true system parameters. The estimation and control algorithm are combined together and convergence to the origin of the closed-loop system for fully unknown linear time-invariant discrete-time systems is shown.
This book constitutes an up-to-date account of principles, methods, and tools for mathematical and statistical modelling in a wide range of research fields, including medicine, health sciences, biology, environmental science, engineering, physics, chemistry, computation, finance, economics, and social sciences. It presents original solutions to real-world problems, emphasizes the coordinated development of theories and applications, and promotes interdisciplinary collaboration among mathematicians, statisticians, and researchers in other disciplines. Based on a highly successful meeting, the International Conference on Applied Mathematics, Modeling and Computational Science, AMMCS 2019, held from August 18 to 23, 2019, on the main campus of Wilfrid Laurier University, Waterloo, Canada, the contributions are the results of submissions from the conference participants. They provide readers with a broader view of the methods, ideas and tools used in mathematical, statistical and computational sciences.
A comprehensive review of the state of the art in the control of multi-agent systems theory and applications The superiority of multi-agent systems over single agents for the control of unmanned air, water and ground vehicles has been clearly demonstrated in a wide range of application areas. Their large-scale spatial distribution, robustness, high scalability and low cost enable multi-agent systems to achieve tasks that could not successfully be performed by even the most sophisticated single agent systems. Cooperative Control of Multi-Agent Systems: Theory and Applications provides a wide-ranging review of the latest developments in the cooperative control of multi-agent systems theory and applications. The applications described are mainly in the areas of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Throughout, the authors link basic theory to multi-agent cooperative control practice — illustrated within the context of highly-realistic scenarios of high-level missions — without losing site of the mathematical background needed to provide performance guarantees under general working conditions. Many of the problems and solutions considered involve combinations of both types of vehicles. Topics explored include target assignment, target tracking, consensus, stochastic game theory-based framework, event-triggered control, topology design and identification, coordination under uncertainty and coverage control. Establishes a bridge between fundamental cooperative control theory and specific problems of interest in a wide range of applications areas Includes example applications from the fields of space exploration, radiation shielding, site clearance, tracking/classification, surveillance, search-and-rescue and more Features detailed presentations of specific algorithms and application frameworks with relevant commercial and military applications Provides a comprehensive look at the latest developments in this rapidly evolving field, while offering informed speculation on future directions for collective control systems The use of multi-agent system technologies in both everyday commercial use and national defense is certain to increase tremendously in the years ahead, making this book a valuable resource for researchers, engineers, and applied mathematicians working in systems and controls, as well as advanced undergraduates and graduate students interested in those areas.
The International Symposium of Robotics Research (ISRR) continues to be the premiere meeting of the International Foundation of Robotics Research (IFRR). The 13th International Symposium of Robotics Research took place Novemb3r 26-29, 2007, in Hiroshima, Japan, and was organized by the two editors of this book. This volume brings a collection of a broad range of topics in robotics. The content of these contributions provides a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and novel areas of applications. Historically, the proceedings of the ISRR have featured ground-breaking work of the highest caliber, which influenced generations to come. The present volume promises to be no exception. The collection of scientific articles in this volume provides new insights to important problems in robotics, written by some of the leaders in the field.
Illustrating techniques in model development, signal processing, data reconciliation, process monitoring, quality assurance, intelligent real-time process supervision, and fault detection and diagnosis, Batch Fermentation offers valuable simulation and control strategies for batch fermentation applications in the food, pharmaceutical, and chemical industries. The book provides approaches for determining optimal reference trajectories and operating conditions; estimating final product quality; modifying, adjusting, and enhancing batch process operations; and designing integrated real-time intelligent knowledge-based systems for process monitoring and fault diagnosis.
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.
Extensively researched and illustrated guidebook of nearly every conceivable aspect of outdoor camping and survival in all types of terrain and climate.
Forming connections between human performance and design, this new edition of Engineering Psychology and Human Performance examines human–machine interaction. The book is organized directly from a psychological perspective of human information processing, and chapters correspond to the flow of information as it is processed by a human being—from the senses, through the brain, to action—rather than from the perspective of system components or engineering design concepts. Upon completing this book, readers will be able to identify how human ability contributes to the design of technology; understand the connections within human information processing and human performance; challenge the way they think about technology’s influence on human performance; and show how theoretical advances have been, or might be, applied to improving human–machine interactions. This new edition includes the following key features: A new chapter on research methods Sections on interruption management and distracted driving as cogent examples of applications of engineering psychology theory to societal problems A greatly increased number of references to pandemics, technostress, and misinformation New applications Amplified emphasis on readability and commonsense examples Updated and new references throughout the text This book is ideal for psychology and engineering students, as well as practitioners in engineering psychology, human performance, and human factors. The text is also supplemented by online resources for students and instructors.