Download Free Provisioning Recovery And In Operation Planning In Elastic Optical Networks Book in PDF and EPUB Free Download. You can read online Provisioning Recovery And In Operation Planning In Elastic Optical Networks and write the review.

Explains the importance of Elastic Optical Networks (EONs) and how they can be implemented by the world’s carriers This book discusses Elastic Optical Networks (EONs) from an operational perspective. It presents algorithms that are suitable for real-time operation and includes experimental results to further demonstrate the feasibility of the approaches discussed. It covers practical issues such as provisioning, protection, and defragmentation. It also presents provisioning and recovery in single layer elastic optical networks (EON). The authors review algorithms for provisioning point-to-point, anycast, and multicast connections, as well as transfer-based connections for datacenter interconnection. They also include algorithms for recovery connections from failures in the optical layer and in-operation planning algorithms for EONs. Provisioning, Recovery and In-operation Planning in Elastic Optical Network also examines multi-layer scenarios. It covers virtual network topology reconfiguration and multi-layer recovery, and includes provisioning customer virtual networks and the use of data analytics in order to bring cognition to the network. In addition, the book: Presents managing connections dynamically—and the flexibility to adapt the connection bitrate to the traffic needs fit well for new types of services, such as datacenter interconnection and Network Function Virtualization (NFV) Examines the topic in a holistic and comprehensive way, addressing control and management plane issues for provisioning, recovery, and in-operation planning Covers provisioning, recovery, and in-operation planning for EONs at the proposed exhaustive level The rapid expanse of new services has made the use of EONs (a relatively new concept) a necessity. That’s why this book is perfect for students and researchers in the field of technologies for optical networks (specifically EONs), including network architectures and planning, dynamic connection provisioning, on-line network re-optimization, and control and management planes. It is also an important text for engineers and practitioners working for telecom network operators, service providers, and vendors that require knowledge on a rapidly evolving topic.
This book constitutes the refereed proceedings of the 23rd International IFIP conference on Optical Network Design and Modeling, ONDM 2019, held in Athens, Greece, in May 2019. The 39 revised full papers were carefully reviewed and selected from 87 submissions. The papers focus on cutting-edge research in established areas of optical networking as well as their adoption in support of a wide variety of new services and applications. This involves the most recent trends in networking including 5G and beyond, big data and network data analytics, cloud/edge computing, autonomic networking, artificial intelligence assisted networks, secure and resilient networks, that drive the need for increased capacity, efficiency, exibility and adaptability in the functions that the network can perform. In this context new disaggregated optical network architectures were discussed, exploiting and integrating novel multidimensional photonic technology solutions as well as adopting open hardware and software platforms relying on software defined networking (SDN), and network function virtualization (NFV) to allow support of new business models and opportunities.
Provides a comprehensive and updated account of WDM optical network systems Optical networking has advanced considerably since 2010. A host of new technologies and applications has brought a significant change in optical networks, migrating it towards an all-optical network. This book places great emphasis on the network concepts, technology, and methodologies that will stand the test of time and also help in understanding and developing advanced optical network systems. The first part of Optical WDM Networks: From Static to Elastic Networks provides a qualitative foundation for what follows—presenting an overview of optical networking, the different network architectures, basic concepts, and a high-level view of the different network structures considered in subsequent chapters. It offers a survey of enabling technologies and the hardware devices in the physical layer, followed by a more detailed picture of the network in the remaining chapters. The next sections give an in-depth study of the three basic network structures: the static broadcast networks, wavelength routed networks, and the electronic/optical logically routed networks, covering the characteristics of the optical networks in the access, metropolitan area, and long-haul reach. It discusses the networking picture; network control and management, impairment management and survivability. The last section of the book covers the upcoming technologies of flex-grid and software defined optical networking. Provides concise, updated, and comprehensive coverage of WDM optical networks Features numerous examples and exercise problems for the student to practice Covers, in detail, important topics, such as, access, local area, metropolitan, wide area all-optical and elastic networks Includes protocols, design, and analysis along with the control and management of the networks Offers exclusive chapters on advance topics to cover the present and future technological trends, such as, software defined optical networking and the flexible grid optical networks Optical WDM Networks: From Static to Elastic Networks is an excellent book for under and post graduate students in electrical/communication engineering. It will also be very useful to practicing professionals in communications, networking, and optical systems.
This book presents advances in the field of optical networks - specifically on research and applications in elastic optical networks (EON). The material reflects the authors’ extensive research and industrial activities and includes contributions from preeminent researchers and practitioners in optical networking. The authors discuss the new research and applications that address the issue of increased bandwidth demand due to disruptive, high bandwidth applications, e.g., video and cloud applications. The book also discusses issues with traffic not only increasing but becoming much more dynamic, both in time and direction, and posits immediate, medium, and long-term solutions throughout the text. The book is intended to provide a reference for network architecture and planning, communication systems, and control and management approaches that are expected to steer the evolution of EONs.
Research and development on optical wavelength-division multiplexing (WDM) networks have matured considerably. While optics and electronics should be used appropriately for transmission and switching hardware, note that "intelligence'' in any network comes from "software,'' for network control, management, signaling, traffic engineering, network planning, etc.The role of software in creating powerful network architectures for optical WDM networks is emphasized. Optical WDM Networks is a textbook for graduate level courses. Its focus is on the networking aspects of optical networking, but it also includes coverage of physical layers in optical networks. The author introduces WDM and its enabling technologies and discusses WDM local, access, metro, and long-haul network architectures. Each chapter is self-contained, has problems at the end of each chapter, and the material is organized for self study as well as classroom use. The material is the most recent and timely in capturing the state-of-the-art in the fast-moving field of optical WDM networking.
This handbook is an authoritative, comprehensive reference on optical networks, the backbone of today’s communication and information society. The book reviews the many underlying technologies that enable the global optical communications infrastructure, but also explains current research trends targeted towards continued capacity scaling and enhanced networking flexibility in support of an unabated traffic growth fueled by ever-emerging new applications. The book is divided into four parts: Optical Subsystems for Transmission and Switching, Core Networks, Datacenter and Super-Computer Networking, and Optical Access and Wireless Networks. Each chapter is written by world-renown experts that represent academia, industry, and international government and regulatory agencies. Every chapter provides a complete picture of its field, from entry-level information to a snapshot of the respective state-of-the-art technologies to emerging research trends, providing something useful for the novice who wants to get familiar with the field to the expert who wants to get a concise view of future trends.
Special emphasis has been given to the design of meshed, middle-sized, and wavelength-routed networks with dynamic traffic in the optical domain, such as the next-generation Metropolitan Area Network.".
The last two years have seen significant developments in the standardization of GMPLS and its implementation in optical and other networks. GMPLS: Architecture and Applications brings you completely up to date, providing the practical information you need to put the growing set of GMPLS-supported services to work and manage them effectively. This book begins by defining GMPLS’s place in a transport network, leveraging your knowledge of MPLS to give you an understanding of this radically new control plane technology. An overview of GMPLS protocols follows, but the real focus is on what comes afterwards: in-depth examinations of the architectures underpinning GMPLS in real-world network environments and current and emerging GMPLS applications. This one-of-a-kind resource delivers immensely useful information for software architects, designers and programmers, hardware developers, system testers, and network operators--and also for managers and other decision-makers. Written by two industry researchers at the forefront of the development of GMPLS. Provides a practical look at GMPLS protocols for signaling, routing, link and resource management, and traffic engineering. Delves deep into the world of GMPLS applications, including traffic engineering, path computation, layer one VPNs, point-to-multipoint connectivity, service management, and resource protection. Explores three distinct GMPLS control plane architectures: peer, overlay, and hybrid, and explains the GMPLS UNI and NNIs. Explains how provisioning challenges can be met in multi-region networks and details the provisioning systems and tools relied on by the GMPLS control plane, along with the standard MIB modules used to manage a GMPLS system.
The rapid growth in communications and internet has changed our way of life, and our requirement for communication bandwidth. Optical networks can enable us to meet the continued demands for this bandwidth, although conventional optical networks struggle in achieving this, due to the limitation of the electrical bandwidth barrier. Flexgrid technology is a promising solution for future high-speed network design. To promote an efficient and scalable implementation of elastic optical technology in the telecommunications infrastructure, many challenging issues related to routing and spectrum allocation (RSA), resource utilization, fault management and quality of service provisioning must be addressed. This book reviews the development of elastic optical networks (EONs), and addresses RSA problems with spectrum fragment issues, which degrade the quality of service provisioning. The book starts with a brief introduction to optical fiber transmission system, and then provides an overview of the wavelength division multiplexing (WDM), and WDM optical networks. It discusses the limitations of conventional WDM optical networks, and discusses how EONs overcome these limitations. It presents the architecture of the EONs and its operation principle. To complete the discussion of network architecture, this book focuses on the different node architectures, and compares their performance in terms of scalability and flexibility. It reviews and classifies different RSA approaches, including their pros and cons. It focuses on different aspects related to RSA. The spectrum fragmentation is a serious issue in EONs, which needs to be managed. The book explains the fragmentation problem in EONs, discusses, and analyzes the major conventional spectrum allocation policies in terms of the fragmentation effect in a network. The taxonomies of the fragmentation management approaches are presented along with different node architectures. State-of-the-art fragmentation management approaches are looked at. A useful feature of this book is that it provides mathematical modeling and analyzes theoretical computational complexity for different problems in elastic optical networks. Finally, this book addresses the research challenges and open issues in EONs and provides future directions for future research.
The book Optical Fiber and Wireless Communications provides a platform for practicing researchers, academics, PhD students, and other scientists to review, plan, design, analyze, evaluate, intend, process, and implement diversiform issues of optical fiber and wireless systems and networks, optical technology components, optical signal processing, and security. The 17 chapters of the book demonstrate capabilities and potentialities of optical communication to solve scientific and engineering problems with varied degrees of complexity.