Download Free Protocols For Oligonucleotide Conjugates Book in PDF and EPUB Free Download. You can read online Protocols For Oligonucleotide Conjugates and write the review.

When first conceived, not only was the aim of Protocols for Oligo nucleotides and Analogs to provide wide coverage of the ohgonuc- otide chemistry field for readers who are well versed within the field, but also to give investigators just entering into the field a new perspective. The very first book on this topic was edited and published by Michael Gait in 1984, in whose laboratory I encountered the newer aspects of oligonucleotide chemistry. Since then, oligonucleotide research has developed to such an extent that its uses extend far beyond basic studies, and now find wide application throughout clinical science as well. Until recently, the major application of oligonucleotides has been in the area of DNA-based diagnostic and "antisense oligonucleotid- based therapeutic approaches. However, oligonucleotides are now also being used as therapeutic agents and are thus frequently found in clinical trials in humans. Synthesis of unmodified oligonucleotides using automated synthe sizers has become a common practice in numerous laboratories. How ever, improvements on the existing techniques and the introduction of ever newer methods for oligonucleotide synthesis is constantly driving ahead in the leading research laboratories. And several new oligonucle otide analogs have been synthesized and studied for their individual prop erties in recent years. The present volume strives to bring the readers the most up-to-date information on the newest aspects of synthesis of oligo nucleotides and their analogs. A separate volume covers synthesis of oligonucleotide conjugates, along with most of the analytical techniques presently used for analysis of oligonucleotides.
Bioconjugate Techniques, 2nd Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or cross linking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. A one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab Step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates More than 600 figures that visually describe the complex reactions associated with the synthesis of bioconjugates Includes entirely new chapters on the latest areas in the field of bioconjugation as follows: Microparticles and nanoparticlesSilane coupling agentsDendrimers and dendronsChemoselective ligationQuantum dotsLanthanide chelatesCyanine dyesDiscrete PEG compoundsBuckyballs,fullerenes, and carbon nanotubesMass tags and isotope tagsBioconjugation in the study of protein interactions
You will easily synthesize and analyze oligonucleotide conjugates by following the step-by-step protocols presented in this volume. These techniques are widely used by all molecular biologists and antisense researchers and find special application by pharmacologists working in new drug development and quality assurance assay.
There are a number of outstanding volumes that provide a comprehensive overview of bioconjugation techniques. However, many of the conventional approaches to the synthesis of chemically modified protein conjugates lack efficient means to control the stoichiometry of conjugation, as well as the s- cific site of attachment of the conjugated moiety. Moreover, the recent dev- opments in microarray technologies as well as in nanobiotechnology—a novel field of research rapidly evolving at the crossroads of physics, chemistry, b- technology, and materials science—call for a summary of modern bioconjugation strategies to overcome the limitations of the classical approaches. Bioconjugation Protocols: Methods and Strategies is intended to provide an update of many of the classic techniques and also to introduce and summarize newer approaches that go beyond the pure biomedical applications of bioconjugation. The purpose of Bioconjugation Protocols: Methods and Str- egies is therefore to provide instruction and inspiration for all those scientists confronting the challenges of semisynthesizing functional biomolecular reagents for a wide variety of applications ranging from novel biomedical diagnostics, to therapeutics, to biomaterials. Part I contains seven protocols for the preparation of protein conjugates.
Contemporary approaches to the synthesis of chemically modified biomacromolecules (proteins, nucleic acids, lipids, and carbohydrates) not only require efficient means to control conjugation and the specific site of attachment of the conjugated moiety but also the effective use of recent developments in the fields of pharmaceutical chemistry, biomolecular/polymer engineering, and nanobiotechnology. In this second edition of Bioconjugation Protocols: Strategies and Methods, expert researchers update the classic methods and introduce valuable new approaches that go beyond basic conjugation techniques to include elements from advanced organic synthesis, molecular biology, surface biotechnology, materials science, and nanobioscience/engineering. These readily reproducible methods cover the preparation of biomolecular conjugates using a variety of labeling techniques and semisynthetic approaches. Additional chapters address the biofunctionalization of surface structures, including organic/inorganic thin films, as well as various types of nanostructures (magnetic nanoparticles, quantum dots, carbon nanotubes, and silicon nanowire devices). All the protocols follow the successful Methods in Molecular BiologyTM series format, each one offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and highly practical, Bioconjugation Protocols: Strategies and Methods, Second Edition offers both novice and experienced researchers access to the broad array of techniques needed to carry out the semisynthesis of functional biomolecular reagents and/or the biofunctionalization of surfaces and structures of unique interest for a wide variety of applications, ranging from novel biomedical diagnostics to powerful new therapeutics to advanced biomaterials.
A comprehensive review of contemporary antisense oligonucleotides drugs and therapeutic principles, methods, applications, and research Oligonucleotide-based drugs, in particular antisense oligonucleotides, are part of a growing number of pharmaceutical and biotech programs progressing to treat a wide range of indications including cancer, cardiovascular, neurodegenerative, neuromuscular, and respiratory diseases, as well as other severe and rare diseases. Reviewing fundamentals and offering guidelines for drug discovery and development, this book is a practical guide covering all key aspects of this increasingly popular area of pharmacology and biotech and pharma research, from the basic science behind antisense oligonucleotides chemistry, toxicology, manufacturing, to safety assessments, the design of therapeutic protocols, to clinical experience. Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. While the idea of antisense oligonucleotides to target single genes dates back to the 1970's, most advances have taken place in recent years. The increasing number of antisense oligonucleotide programs in clinical development is a testament to the progress and understanding of pharmacologic, pharmacokinetic, and toxicologic properties as well as improvement in the delivery of oligonucleotides. This valuable book reviews the fundamentals of oligonucleotides, with a focus on antisense oligonucleotide drugs, and reports on the latest research underway worldwide. • Helps readers understand antisense molecules and their targets, biochemistry, and toxicity mechanisms, roles in disease, and applications for safety and therapeutics • Examines the principles, practices, and tools for scientists in both pre-clinical and clinical settings and how to apply them to antisense oligonucleotides • Provides guidelines for scientists in drug design and discovery to help improve efficiency, assessment, and the success of drug candidates • Includes interdisciplinary perspectives, from academia, industry, regulatory and from the fields of pharmacology, toxicology, biology, and medicinal chemistry Oligonucleotide-Based Drugs and Therapeutics belongs on the reference shelves of chemists, pharmaceutical scientists, chemical biologists, toxicologists and other scientists working in the pharmaceutical and biotechnology industries. It will also be a valuable resource for regulatory specialists and safety assessment professionals and an important reference for academic researchers and post-graduates interested in therapeutics, antisense therapy, and oligonucleotides.
In the past few years, antisense methodology has moved from in vitro studies to in vivo studies and first human trials. While the basic concept of antisense technology is simple, the methodological problems associated with its use are numerous and complex. Antisense- based methods have proven to be a field of research where careful attention to experimental protocols and appropriate controls is necessary. The Manual of Antisense Methodology emphasizes the application of antisense oligonucleotides, and is a guide for the identification of antisense and non-antisense effects in different experimental settings. The work is organized into three sections: antisense application in vitro, antisense application in vivo (animal models) and finally, clinical antisense studies. Where at all possible, the methods are described in sufficient detail to allow reproduction of a given experiment. The Manual of Antisense Methodology will be of interest to researchers in immunology, cancer research, pharmacology and internal medicine; and physicians conducting clinical studies in these fields.
Good methods must be reliable, well-tested, and honed to minimize the time and expense required to achieve the desired results. CPNC provides a continuously growing and evolving set of protocols that allows researchers to benefit from the experience of other researchers around the world. The core manual provides a comprehensive set of protocols that have been compiled, revised, and streamlined over the last 6 years. Quarterly updates provide new protocols in emerging areas of research as well as continued advances and new applications for fundamental methods. The book is designed to grow and change with the field of nucleic acid chemistry. Fundamental nucleoside chemistry methods include sugar-base condensation, phosphorylation, and nucleoside protection. Methods for oligonucleotide synthesis include H-phosphonate and phosphoramidite approaches, solid-phase and solution-phase synthesis, large-scale synthesis, synthesis for modified and unmodified oligonucleotides, conjugation of oligonucleotides, synthesis without base protection, and synthesis on microarrays. More specialized synthetic methods include synthesis of biologically active nucleosides and prodrugs. Purification and characterization methods are detailed. Advanced methods include biophysical analysis, combinatorial methods, and nanotechnology. Each protocol includes rationale for choosing appropriate methods, step-by-step procedures, complete recipes, anticipated results, characterization data, and troubleshooting, as well as background and recommended reading. The level of procedural detail is far beyond that found in the research literature, and tips and comments from authors are geared towards ensuring reliable duplication in the laboratory.
This volume details protocols on rationale design of therapeutic siRNA molecules and its encapsulation with smart vehicles to overcome the barriers to an effective administration in vivo. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Design and Delivery of SiRNA Therapeutics aims to ensure successful results in the further study of this vital field. This volume details protocols on rationale design of therapeutic siRNA molecules and its encapsulation with smart vehicles to overcome the barriers to an effective administration in vivo. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Design and Delivery of SiRNA Therapeutics aims to ensure successful results in the further study of this vital field.
This book provides a compelling overall update on current status of RNA interference