Download Free Protection Of Concrete Book in PDF and EPUB Free Download. You can read online Protection Of Concrete and write the review.

The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation reports for repair and rehabilitation projects. Considerations for certain specialized types of rehabilitation projects are also given. In addition, the author translates cryptic codes, theories, specifications and details into easy to understand language. Tip boxes are used to highlight key elements of the text as well as code considerations based on the International Code Council or International Building Codes. The book contains various worked out examples and equations. Case Studies will be included along with diagrams and schematics to provide visuals to the book. - Deals primarily with evaluation and repair of concrete structures - Provides the reader with a Step by Step method for evaluation and repair of Structures - Covers all types of Concrete structures ranging from bridges to sidewalks - Handy tables outlining the properties of certain types of concrete and their uses
The idea of preparing a technical document for the repairs and interventions upon concrete structures goes back to the former fib COM5: Structural Service Life Aspects, being the goal of the then TG5.9. After a long period of reduced activity, and taking into account the reorganization of fib commissions that meanwhile took place, on June 2017 a different approach was proposed to push forward the task of TG8.1 (formerly TG5.9). The (new) goal of TG 8.1 was to deliver a ‘how-to-do’ guide, gathering together protection, repair, and strengthening techniques for concrete structures. Chapters are intended to provide both guidelines and case-studies, serving as support to the application of fib MC2020 pre-normative specifications. Each chapter was written by an editorial team comprising desirably at least a researcher, a designer and a contractor. Templates have been prepared in order to harmonize the contents and the presentation of the different methods. Following the writing process, chapters were reviewed by experts and, after amendments by the authors, they underwent a second review process by COM8 and TG3.4 members, as well as by different practitioners. For each protection, repair and strengthening method addressed in this guide, readers have a description of when to adopt it, which materials and systems are required, which techniques are available, and what kind of equipment is needed. It then presents a summary of stakeholders’ roles and qualifications, design guidelines referring to most relevant codes and references, the intervention procedure, quality control measures and monitoring and maintenance activities. Due to the extent of the guide, it was decided to publish it as bulletin 102, addressing protection and repair methods, and bulletin 103, addressing strengthening methods. We would like to thank the authors, reviewers and members of COM8 and TG3.4 for their work in developing this fib Bulletin, which we hope will be useful for professionals working in the field of existing concrete structures, especially those concerned with life-cycle management and conservation activities. As noted above, this Bulletin is also intended to act as a background and supporting document to the next edition of the fib Model Code for Concrete Structures, which is currently under development under the auspices of TG10.1 with the working title of "fib Model Code 2020".
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.
This book is concerned with the long term durability of concrete as a structural material as used in the construction of buildings, bridges, roads, marine and civil engineering structures. It discusses the fundamental reasons for the deterioration of concrete over time and available techniques for detecting, remedying and preventing the deteriorati
A wealth of recent research into the continued deterioration of reinforced concrete structures has led to a review of methods of investigation and repair techniques. This thoroughly revised and updated new edition brings together the fundamental aspects of this world wide problem and offers advice on how investigations, diagnosis and consequent rem
Concrete is arguably the major construction material used worldwide. It has generally served well, yet too often it has failed to achieve the required performance. Although developments in materials and practice have widened the scope for the use of concrete, they have also had effects on its performance. This book presents current thinking and future developments on means of protecting concrete and ensuring its adequate performance in the required application.
This book is concerned with the long term durability of concrete as a structural material as used in the construction of buildings, bridges, roads, marine and civil engineering structures. It discusses the fundamental reasons for the deterioration of concrete over time and available techniques for detecting, remedying and preventing the deteriorati
Reinforced concrete is the most widely used construction material in the world, and extended performance is rightly expected. Many structures are in aggressive environments, of critical importance and may be irreplaceable, so repair and protection are vital. This book surveys deterioration of concrete, particularly corrosion of the steel reinforcement, and the various chemical, biological, physical and mechanical causes of deterioration. It outlines condition survey and diagnosis techniques by on-site and laboratory measurements. It sets out mechanical methods of protection and repair, such as patching, inhibitors, coatings, penetrants and structural strengthening as well as cathodic protection and other electrochemical methods. This book also gives guidance on preventative measures including concrete technology and construction considerations, coatings and penetrants, alternate reinforcement, permanent corrosion monitoring and durability planning aspects. Asset managers, port engineers, bridge maintenance managers, building managers, heritage structure engineers, plant engineers, consulting engineers, architects, specialist contractors and construction material suppliers who have the task of resolving problems of corrosion of steel reinforced concrete elements will find this book an extremely useful resource. It will also be a valuable reference for students at postgraduate level. Authors The late Professor Brian Cherry of Monash University, Melbourne, Australia was one of the world’s leading corrosion science and engineering educators and researchers. Warren Green of Vinsi Partners, Sydney, Australia is a corrosion engineer and materials scientist. He is also an Adjunct Associate Professor.
Essential reading for researchers, practitioners, and engineers, this book covers not only all the important aspects in the field of corrosion of steel reinforced concrete but also discusses new topics and future trends. Theoretical concepts of corrosion of steel in concrete structures, the variety of reinforcing materials and concrete, including stainless steel and galvanized steel, measurements and evaluations, such as electrochemical techniques and acoustic emission, protection and maintenance methods, and modelling, latest developments, and future trends in the field are discussed. - Comprehensive coverage of the corrosion of steel bars in concrete, investigating the range of reinforcing materials, and types of concrete - Introduces the latest measuring methods, data collection, and advanced modeling techniques - Second edition covers a range of new, emerging topics such as the concept of chloride threshold value, concrete permeability and chloride diffusion, the role of steel microstructure, and innovations in corrosion detection devices